

Project:	Contract:		
6020 Test	1311-1		
Subject: Glass Balustrade Design	Sheet No.		
Date: 17/10/2019	By: A.N & T.S		

On Level Ltd.,
8, Alexandria Court
Ashton Commerce Park
Ashton-under-Lyne
Lancashire OL7 OQN
United Kingdom

1311-1 Structural Glass Balustrade

Analysis By	Checked By
A.N	T.S.

Revision	Date	Issued By	Comment
0	17/10/2019	T.S	Issued

Project:	Contract:		
6020 Test	1311-1		
Subject:	Sheet No.		
Glass Balustrade Design	1		
Date:	By:		
17/10/2019	A.N & T.S		

Contents

Actions/Assumptions/Result Summary:	3
Actions:	3
Assumptions:	3
Result Summary:	3
Glass Strength Calculation:	4
Balustrade Loading:	4
Sketch Of System:	5
Connection To Concrete Design:	6
Loading at Connection:	6
Shoe Analysis:	8
Bending Stress of Shoe due to Maximum moment of 0.85kNm (SLS):	8
Deflection of Shoe due to Maximum moment of 0.85kNm (SLS):	g
Glass Analysis:	10
Test 1: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:	10
Test 1: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:	11
Test 1: Bending Stress of Glass Panel due to 1.0kN/m ² Infill Load:	12
Test 1: Deflection of Glass Panel due to 1.0kN/m ² Infill Load:	13
Test 1: Bending Stress of Glass Panel due to 0.5kN Point Load:	14
Test 1: Deflection of Glass Panel due to 0.5kN Point Load:	15
Test 2: Bending Stress of Glass Panel due to 0.36kN/m Balustrade Load:	16
Test 2: Deflection of Glass Panel due to 0.36kN/m Balustrade Load:	17
Test 2: Bending Stress of Glass Panel due to 0.5kN/m² Infill Load:	18
Test 2: Deflection of Glass Panel due to 0.5kN/m ² Infill Load:	19
Test 2: Bending Stress of Glass Panel due to 0.25kN Point Load:	20
Test 2: Deflection of Glass Panel due to 0.25kN Point Load:	21
Test 3: Bending Stress of Glass Panel due to 0.36kN/m Balustrade Load:	22
Test 3: Deflection of Glass Panel due to 0.36kN/m Balustrade Load:	23
Test 3: Bending Stress of Glass Panel due to 0.5kN/m² Infill Load:	24

Project:	Contract:		
6020 Test	1311-1		
Subject:	Sheet No.		
Glass Balustrade Design	2		
Date:	By:		
17/10/2019	A.N & T.S		

Appendix A	28
Test 3: Deflection of Glass Panel due to 0.25kN Point Load:	27
Test 3: Bending Stress of Glass Panel due to 0.25kN Point Load:	26
Test 3: Deflection of Glass Panel due to 0.5kN/m ² Infill Load:	25

Project:	Contract:		
6020 Test	1311-1		
Subject: Glass Balustrade Design	Sheet No.		
Date: 17/10/2019	By: A.N & T.S		

Actions/Assumptions/Result Summary:

Actions:

Type of occupancy for part of the building or structure	Examples of specific use	Horizontal uniformly distributed line load (kN/m)	Uniformly distributed load applied to the infill (kN/m ²)	A point load applied to part of the infill (kN)	
Domestic and residential activities	(i) All areas within or serving exclusively one single family dwelling including stairs, landings, etc. but excluding external balconies and edges of roofs	0.36	0.5	0.25	
	(ii) Other residential, i.e. houses of multiple occupancy and balconies, including Juliette balconies and edges of roofs in single family dwellings	0.74	1.0	0.5	

Assumptions:

Concrete Grade C30/37

Result Summary:

Glass: 1050×1000×12mm Toughened Laminated Glass panel.

Shoe: On Level Aluminium Shoe Model TL6020.

Test	Load	Glass	Handrail	Max. Deflection	ОК
Number					
Test 1	0.74kN/m	12mm Toughened	Yes	24.72mm < 25mm	Yes
Test 2	0.36kN/m	12mm Toughened	No	12.03mm < 25mm	Yes
Test 3	0.36kN/m	13.52mm Toughened Laminated	No	8.4mm < 25mm	Yes

Option	Line Load	H1	Anchor	Anchor Type	Grade	Concrete
		Height	Distance			Edge
		FFL				Distance
1	0.74kN/m	1150mm	400mm	M10 FIS V 360	8.8	70mm
2	0.74kN/m	1150mm	200mm	M12 FAZ II	8.8	60mm
3	0.36kN/m	1150mm	600mm	M12 FAZ II	8.8	75mm
4	0.36kN/m	1150mm	600mm	M10 FIS V 360	8.8	70mm

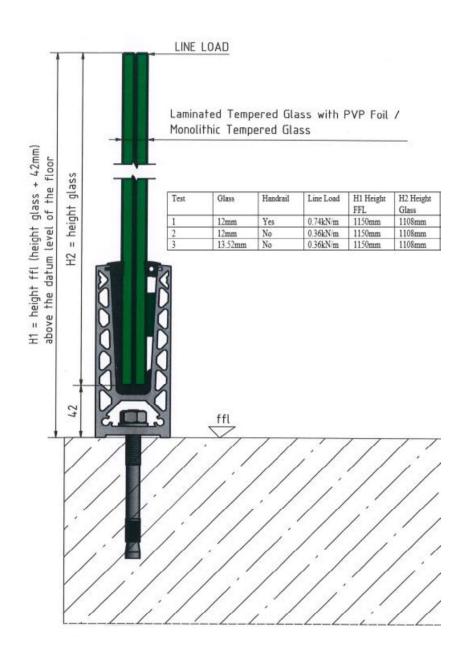
Project:	Contract:		
6020 Test	1311-1		
Subject: Glass Balustrade Design	Sheet No.		
Date: 17/10/2019	By: A.N & T.S		

Glass Strength Calculation:

Balustrade Loading:

< 5mins duration => $k_{mod} = 0.77$

 $f_{gd} = (k_{mod})(k_{sp})(f_{gk})/\gamma_{ma} + k_v(f_{bk}\text{-}f_{gk})/\gamma_{mv}$


 $f_{gd} = (0.77)(1.0)(45)/1.6 + 1.0(120-45)/1.2$

 $\underline{f_{gd}} = 84.2 \text{N/mm}^2$

Project:	Contract:	
6020 Test	1311-1	
Subject:	Sheet No.	
Glass Balustrade Design	5	
Date:	By:	
17/10/2019	A.N & T.S	

Sketch Of System:

Project:	Contract:	
6020 Test	1311-1	
Subject:	Sheet No.	
Glass Balustrade Design	6	
Date:	By:	
17/10/2019	A.N & T.S	

Connection To Concrete Design:

Loading at Connection:

Option 1:

Shear Force = 0.74kN/m × 1.5×0.4 m = 0.44kN (ULS)

 $Moment = 0.74 kN/m \times 1.5 \times 1.150 m \times 0.4 m = 0.51 kNm (ULS)$

Use 1 Nr M10×150 FIS V 360 Mild Steel bolts @400mm C/C.

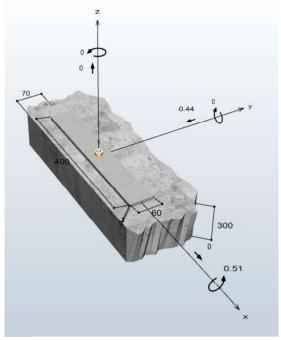


FIGURE 1-OPTION 1

Option 2:

Shear Force = 0.74kN/m $\times 1.5 \times 0.2$ m = 0.22kN (ULS)

 $Moment = 0.74 kN/m \times 1.5 \times 1.150 m \times 0.2 m = 0.25 kNm (ULS)$

Use 1 Nr M12 FAZ II Mild Steel bolts @200mm C/C.

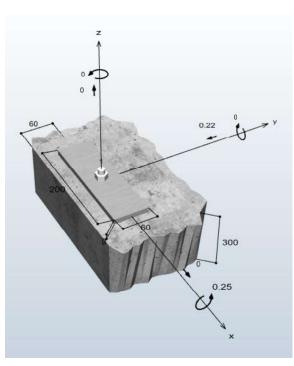


FIGURE 2-OPTION 2

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No. 7
Date: 17/10/2019	By: A.N & T.S

Option 3:

Shear Force = 0.36kN/m × 1.5×0.6 m = 0.32kN (ULS)

 $Moment = 0.36kN/m \times 1.5 \times 1.150m \times 0.6m = 0.37kNm (ULS)$

Use 1 Nr M12 FAZ II Mild Steel bolts @600mm C/C.

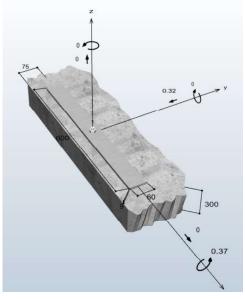


FIGURE 3-OPTION 3

Option 4:

Shear Force = 0.36kN/m $\times 1.5 \times 0.6$ m = 0.32kN (ULS)

 $Moment = 0.36kN/m \times 1.5 \times 1.150m \times 0.6m = 0.37kNm (ULS)$

Use 1 Nr M10×150 FIS V 360 Mild Steel bolts @600mm C/C.

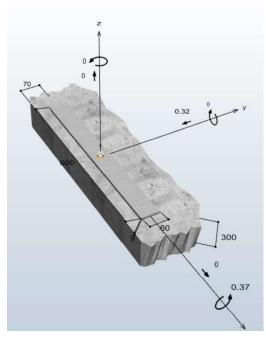
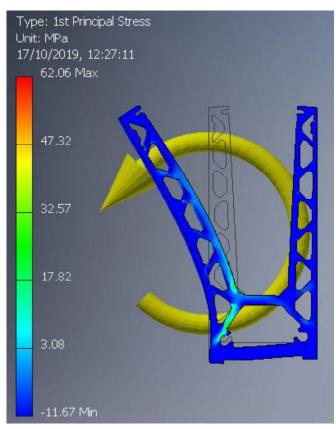


FIGURE 4-OPTION 4

Option	Line Load	H1	Anchor	Anchor Type	Grade	Concrete
		Height	Distance			Edge
		FFL				Distance
1	0.74kN/m	1150mm	400mm	M10 FIS V 360	8.8	70mm
2	0.74kN/m	1150mm	200mm	M12 FAZ II	8.8	60mm
3	0.36kN/m	1150mm	600mm	M12 FAZ II	8.8	75mm
4	0.36kN/m	1150mm	600mm	M10 FIS V 360	8.8	70mm

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No. 8
Date: 17/10/2019	By: A.N & T.S


Shoe Analysis:

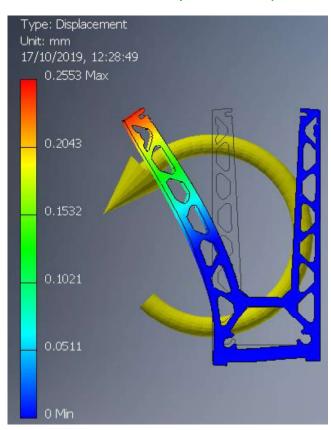
Bending Stress of Shoe due to Maximum moment of 0.85kNm (SLS):

- Analysis Software was used to determine maximum bending stress of the shoe due to Maximum Moment of 0.85kNm (SLS)
- On Level Aluminium Shoe Model TL6020 restrained at base.

Result:

Max. Bending Stress =
$$\frac{93.09N}{mm^2}$$
 < $180N/mm^2$

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S


Deflection of Shoe due to Maximum moment of 0.85kNm (SLS):

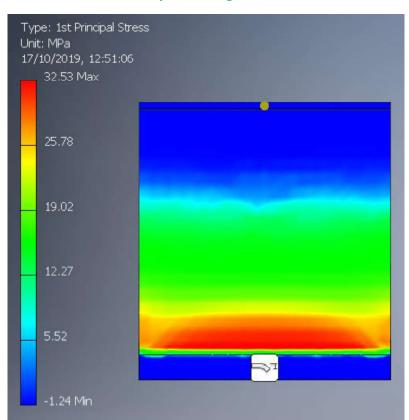
- Analysis Software was used to determine maximum Deflection of the shoe due to Maximum Moment of 0.85kNm (SLS)
- On Level Aluminium Shoe Model TL6020 restrained at base.

Result:

Max. Deflection = 0.2553mm < 25mm

Okay in Deflection (Glass Deflection only)

Project:	Contract:	
6020 Test	1311-1	
Subject: Glass Balustrade Design	Sheet No.	
Date: 17/10/2019	By: A.N & T.S	

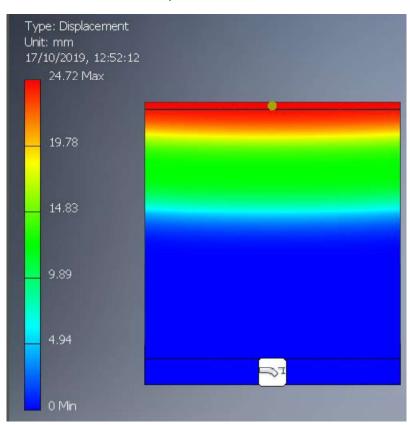

Glass Analysis:

Test 1: Bending Stress of Glass Panel due to 0.74kN/m Balustrade Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $32.53 \text{N/mm}^2 \text{ X } 1.5 = 48.8 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

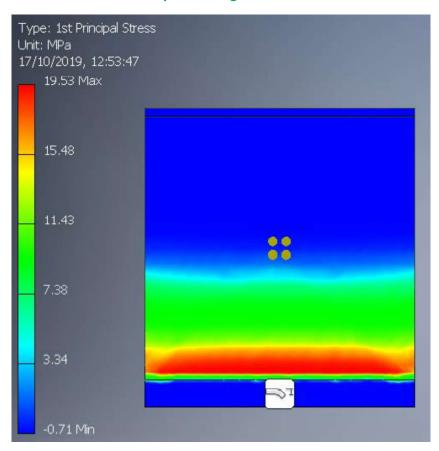

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 1: Deflection of Glass Panel due to 0.74kN/m Balustrade Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.74kN/m Balustrade load.
- 12mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 24.72mm < 25mm

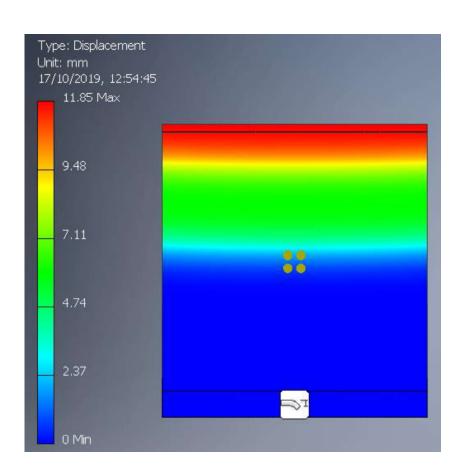

Project:	Contract:	
6020 Test	1311-1	
Subject: Glass Balustrade Design	Sheet No.	
Date: 17/10/2019	By: A.N & T.S	

Test 1: Bending Stress of Glass Panel due to 1.0kN/m² Infill Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0kN/m² Infill Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $19.53 \text{N/mm}^2 \text{ X } 1.5 = 29.3 \text{N/mm}^2 < 84.2 \text{N/mm}^2$

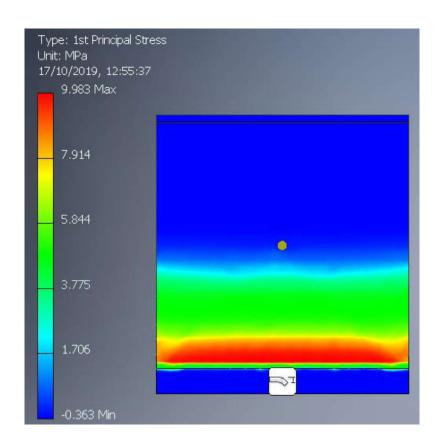

Project:	Contract:	
6020 Test	1311-1	
Subject: Glass Balustrade Design	Sheet No.	
Date: 17/10/2019	By: A.N & T.S	

Test 1: Deflection of Glass Panel due to 1.0kN/m² Infill Load:

- Analysis Software was used to determine maximum deflection of the glass due to 1.0kN/m² Infill load.
- 12mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 11.85mm < 25mm

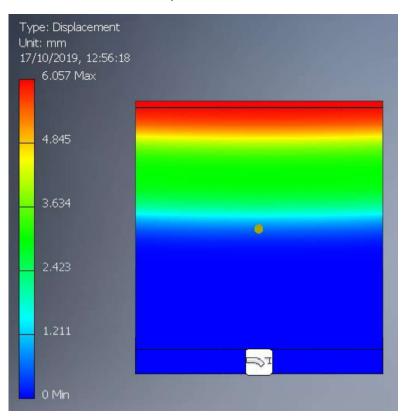

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 1: Bending Stress of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN Point Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $9.983 \text{N/mm}^2 \text{ X } 1.5 = 15 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

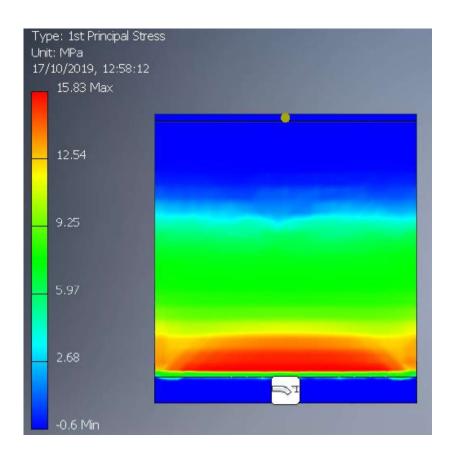

Project:	Contract:	
6020 Test	1311-1	
Subject: Glass Balustrade Design	Sheet No.	
Date: 17/10/2019	By: A.N &T.S	

Test 1: Deflection of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN Point load.
- mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 6.057mm < 25mm

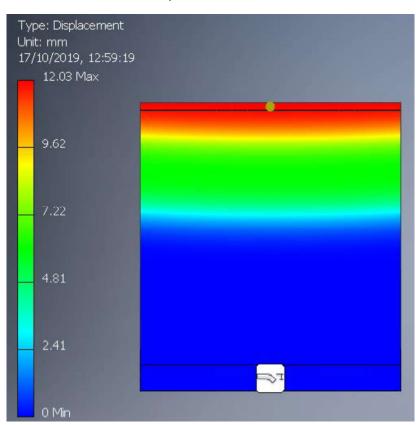

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N &T.S

Test 2: Bending Stress of Glass Panel due to 0.36kN/m Balustrade Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.36kN/m Balustrade Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $15.83 \text{N/mm}^2 \text{ X } 1.5 = 23.75 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

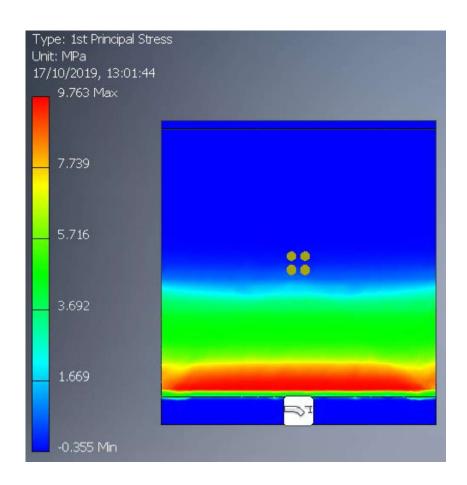

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N &T.S

Test 2: Deflection of Glass Panel due to 0.36kN/m Balustrade Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.36kN/m Balustrade load.
- 12mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 12.03mm < 25mm

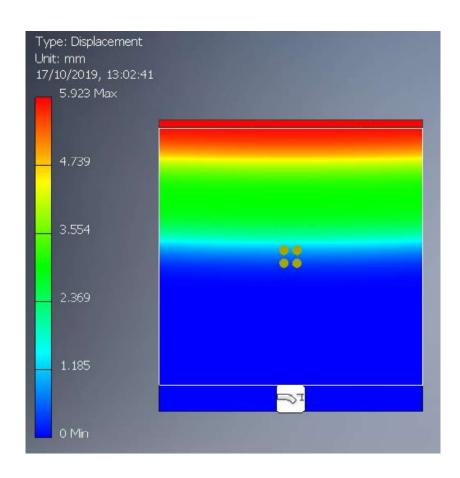

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N &T.S

Test 2: Bending Stress of Glass Panel due to 0.5kN/m² Infill Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN/m² Infill Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $9.763 \text{N/mm}^2 \text{ X } 1.5 = 14.65 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

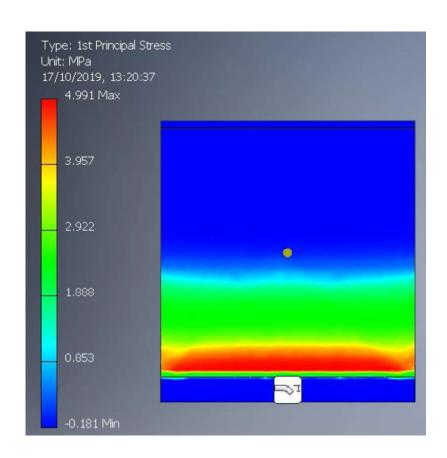

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N &T.S

Test 2: Deflection of Glass Panel due to 0.5kN/m² Infill Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN/m² Infill load.
- 12mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 5.923mm < 25mm

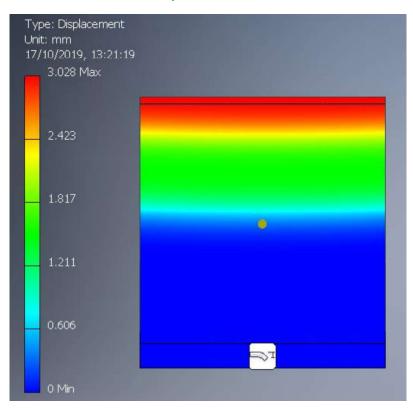

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N &T.S

Test 2: Bending Stress of Glass Panel due to 0.25kN Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.25kN Point Load.
- 12mm Toughened Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $4.991 \text{N/mm}^2 \text{ X } 1.5 = 7.5 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

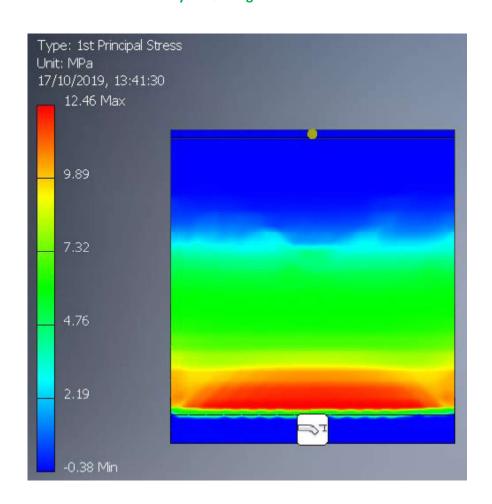

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 2: Deflection of Glass Panel due to 0.25kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.25kN Point load.
- 12mm Toughened Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 3.028mm < 25mm

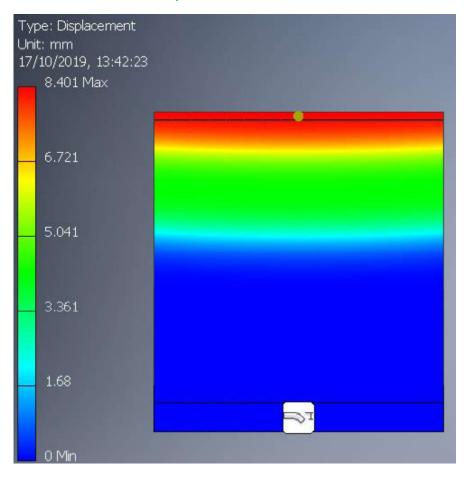

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Bending Stress of Glass Panel due to 0.36kN/m Balustrade Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.36kN/m Balustrade Load.
- 13.52mm Toughened Laminated Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $12.46 \text{N/mm}^2 \text{ X } 1.5 = 18.7 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$

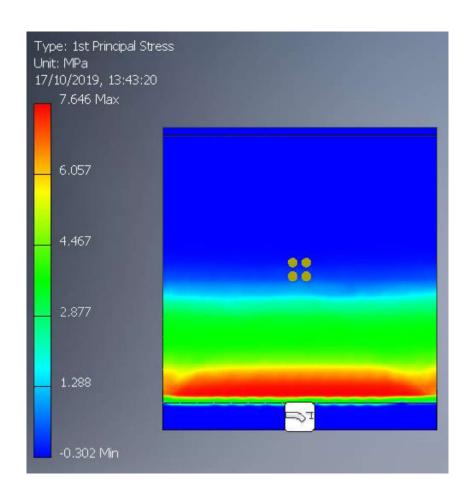

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Deflection of Glass Panel due to 0.36kN/m Balustrade Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.36kN/m Balustrade load.
- 13.52mm Toughened Laminated Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 8.401mm < 25mm

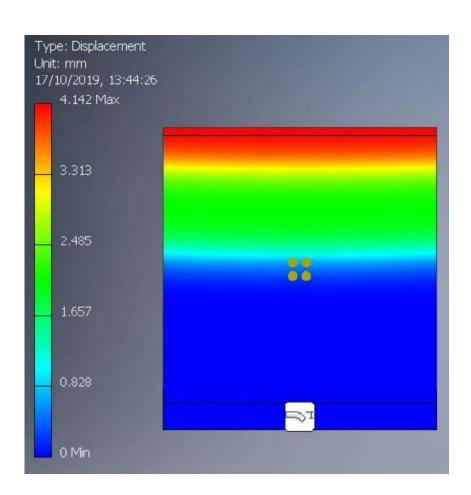

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Bending Stress of Glass Panel due to 0.5kN/m² Infill Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN/m² Infill Load.
- 13.52mm Toughened Laminated Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $7.65 \text{N/mm}^2 \text{ X } 1.5 = 11.5 \text{N/mm}^2 < 84.2 \text{N/mm}^2$

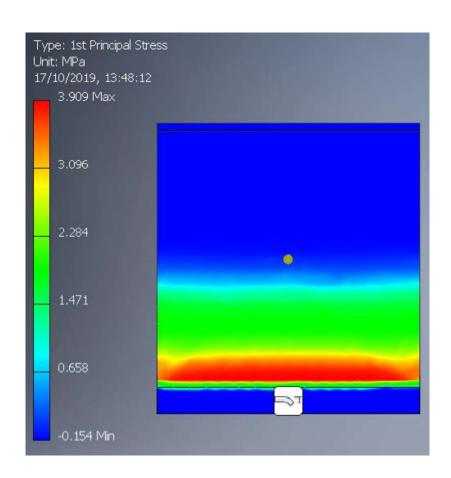

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Deflection of Glass Panel due to 0.5kN/m² Infill Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN/m² Infill load.
- 13.52mm Toughened Laminated Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 4.142mm < 25mm

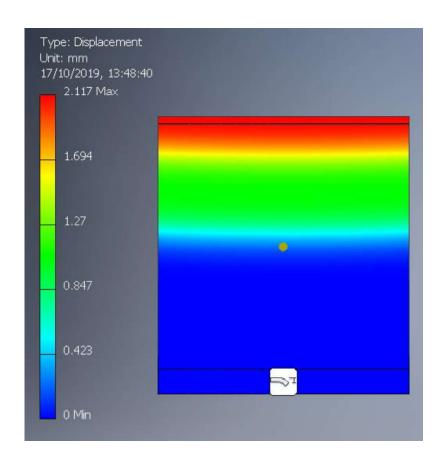

Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Bending Stress of Glass Panel due to 0.25kN Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.25kN Point Load.
- 13.52mm Toughened Laminated Glass Panel.
- Bending stress analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Bending Stress = $3.909 \text{N/mm}^2 \text{ X } 1.5 = 5.9 \text{N/mm}^2 < 84.2 \text{ N/mm}^2$


Project:	Contract:
6020 Test	1311-1
Subject: Glass Balustrade Design	Sheet No.
Date: 17/10/2019	By: A.N & T.S

Test 3: Deflection of Glass Panel due to 0.25kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.25kN Point load.
- 13.52mm Toughened Laminated Glass Panel.
- Deflection analysed based on glass panel 1000mm X 1108mm.

Result:

Max. Deflection (represents deflection of glass only) = 2.117mm < 25mm

Project:	Contract:		
6020 Test	1311-1		
Subject:	Sheet No.		
Glass Balustrade Design	28		
Date: 17/10/2019	By: A.N & T.S		

Appendix A

Table 2 Minimum horizontal imposed loads for parapets, barriers and balustrades

Type of occupancy for part of the building or structure	Examples of specific use	Horizontal uniformly distributed line load (kN/m)	Uniformly distributed load applied to the infill (kN/m²)	A point load applied to part of the infill (kN)
Domestic and residential activities	(i) All areas within or serving exclusively one single family dwelling including stairs, landings, etc. but excluding external balconies and edges of roofs	0.36	0.5	0.25
	(ii) Other residential, i.e. houses of multiple occupancy and balconies, including Juliette balconies and edges of roofs in single family dwellings	0.74	1.0	0.5
Offices and work areas not included elsewhere, including storage areas	(iii) Light access stairs and gangways not more than 600 mm wide	0.22	-	-
	(iv) Light pedestrian traffic routes in industrial and storage buildings except designated escape routes	0.36	0.5	0.25
	(v) Areas not susceptile to overcrowding in office and institutional buildings, also industrial and storage buildings except as given above	0.74	1.0	0.5
Areas where people might congregate	(vi) Areas having fixed seating within 530 mm of the barrier, balustrade or parapet	1.5	1.5	1.5
Areas with tables or fixed seatings	(vii) Restaurants and bars	1.5	1.5	1.5
Areas without obstacles for moving people and not susceptible to overcrowding	(viii) Stairs, landings, corridors, ramps	0.74	1.0	0.5
	(ix) External balconies including Juliette balconies and edges of roofs. Footways and pavements within building curtilage adjacent to basement/sunken areas	0.74	1.0	0.5