

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	1
Date:	By:
20/07/2020	R.F.

On Level Ltd.,

8, Alexandria Court Ashton Commerce Park Ashton-under-Lyne Lancashire OL7 0QN United Kingdom

Privacy Screen

1348-1 Glass Balustrade

Analysis By	Checked By		
R.F.	T.S.		

1	20/07/2020 T.S.		Issued
0	31/01/2020	T.S.	Issued
Revision	Date	Issued By	Comment

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	2
Date:	By:
20/07/2020	R.F.

Contents

Introduction/Actions/Result Summary:	5
Introduction:	5
Actions:	5
Assumption:	5
Result Summary:	5
Glass Strength	6
Balustrade Loading:	6
Case Study 01:	7
Sketch - 21.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 6020:	7
Connection To Concrete Design:	8
Loading at Connection:	8
Case Study 02:	9
Sketch - 25.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 6030:	9
Connection To Concrete Design:	10
Loading at Connection:	
Case Study 03:	11
Sketch - 25.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 3030:	11
Connection To Concrete Design:	12
Loading at Connection:	12
Case Study 04:	13
Sketch - 25.52mm – 1.5kN/m (Glass) Sentry Interlayer and TL 6030:	
Connection To Concrete Design:	14
Loading at Connection:	14
Case Study 05:	15
Sketch - 25.52mm – 1.5kN/m (Glass) Sentry Interlayer and TL 3030:	15
Connection To Concrete Design:	16
Loading at Connection:	

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	3
Date:	By:
20/07/2020	R.F.

Case Study 06:	17
Sketch - 31.52mm – 1.5kN/m (Glass) PVB Interlayer and TL 6030:	17
Connection To Concrete Design:	18
Loading at Connection:	18
Case Study 07:	19
Sketch - 31.52mm – 1.5kN/m (Glass) PVB Interlayer and TL 3030:	19
Connection To Concrete Design:	20
Loading at Connection:	20
Case Study 08:	21
Sketch - 25.52mm – 0.74kN/m (Glass) PVB Interlayer and TL 6030:	21
Connection To Concrete Design:	22
Loading at Connection:	22
Case Study 09:	23
Sketch - 25.52mm – 1.5kN/m (Glass) PVB Interlayer at 1.1m above the FFL and TL 6030:	23
Connection To Concrete Design:	24
Loading at Connection:	24
Appendix A - Shoe Analysis	25
Shoe Analysis TL 6020 – 0.74kN/m	26
Shoe Analysis TL 6030 – 0.74kN/m	28
Shoe Analysis TL 6030 – 1.5kN/m	30
Shoe Analysis TL 3030 – 0.74kN/m	32
Shoe Analysis TL 3030 – 1.5kN/m	34
Appendix B – Glass Analysis	36
21.52mm Glass Analysis – 0.74kN/m Sentry Interlayer	37
25.52mm Glass Analysis – 0.74kN/m Sentry Interlayer	43
25.52mm Glass Analysis – 0.74kN/m PVB Interlayer	49
25.52mm Glass Analysis – 1.5kN/m Sentry Interlayer	55
25.52mm Glass Analysis – 1.5kN/m PVB Interlayer at 1.1m above FFL	61

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	4
Date:	By:
20/07/2020	R.F.

31.52mm Glass Analysis – 1.5kN/m PVB Interlayer67	
Appendix C -Fiscer Reports	

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	5
Date:	By:
20/07/2020	R.F.

Introduction/Actions/Result Summary:

Introduction:

TSA was instructed by On Level to carry out calculations @1800mm high Privacy Screen. The balustrade load is applied @1800mm above FFL.

Actions:

Balustrade load = 0.74kN/m	(Table NA.5 IS1991-1-1:2002)
Point load = 0.5kN	(Table NA.4.2 IS 1991-1-1:2002)
Infill load = 1kN	(Table NA.5 IS1991-1-1:2002)
Balustrade load = 1.5kN/m	(Table NA.5 IS1991-1-1:2002)
Point load = 1.5kN	(Table NA.6 IS1991-1-1:2002)
Infill load = 1.5kN/m2	(Table NA.6 IS1991-1-1:2002)

Assumption:

Concrete Grade = C30/37

Result Summary:

Study	Size of the Glass (m)	Glass (mm)	Interlayer	Working Line Load for System (kN/m)	Glass Deflection (mm)	Shoes Defl	ection (mm)	Combined TOTAL (mm)
Study 01	1.0 x 1.8	21.52	Sentry	0.74	12.15	TL 6020	6.67	18.82
Study 02	1.0 x 1.8	25.52	Sentry	0.74	7.19	TL 6030	3.58	10.77
Study 03	1.0 x 1.8	25.52	Sentry	0.74	7.19	TL 3030	3.72	10.91
Study 04	1.0 x 1.8	25.52	Sentry	1.5	14.57	TL 6030	7.26	21.83
Study 05	1.0 x 1.8	25.52	Sentry	1.5	14.57	TL 3030	7.53	22.1
Study 06	1.0 x 1.8	31.52	PVB	1.5	11.39	TL 6030	7.26	18.65
Study 07	1.0 x 1.8	31.52	PVB	1.5	11.39	TL 3030	7.53	18.92
Study 08	1.0 x 1.8	25.52	PVB	0.74	16.18	TL 6030	3.58	19.76
Study 09	1.0 x 1.8	25.52	PVB	1.5 (at 1.1m above FFL)	14.07	TL 6030	7.26	21.33

NOTE:

All combined deflection < 25mm and therefore acceptable

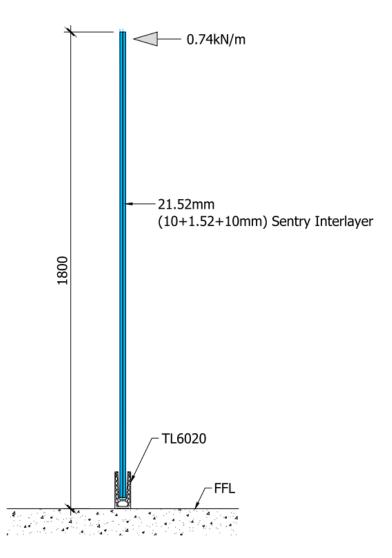
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	6
Date:	By:
20/07/2020	R.F.

Glass Strength

Balustrade Loading: < 5mins duration => k_{mod} = 0.77

 $f_{gd} = (k_{mod})(k_{sp})(f_{gk})/\gamma_{ma} + k_v(f_{bk}-f_{gk})/\gamma_{mv}$

 $f_{gd} = (0.77)(1.0)(45)/1.6 + 1.0(120\text{-}45)/1.2$


 $f_{gd} = 84.2 \text{N/mm}^2$

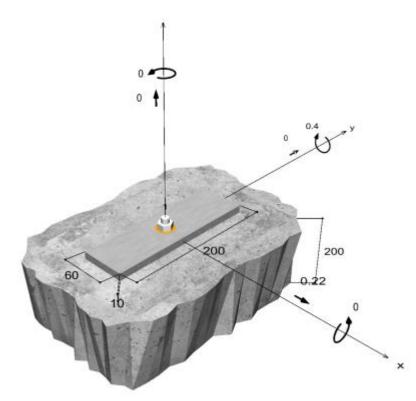
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	7
Date:	By:
20/07/2020	R.F.

Case Study 01:

Sketch - 21.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 6020:

NOTE:

• Combined Deflection 6.67mm (Shoe) plus 12.15mm (Glass) = 18.82mm OK in deflection

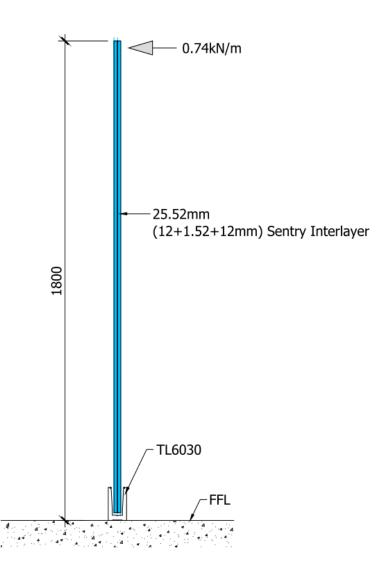

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	8
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 0.74kN/m × 1.5×0.2 m = 0.222kN (ULS)

Maximum Moment = 0.74kN/m × 1.5×0.2 m × 1.8m = 0.4kN (ULS)

Therefore use 1Nr Threaded Rod FIS A M 10×150 Grade 8.8 Fischer Bolt with FIS V 360 S Chemical Resin @200mm C/C. See design in Appendix C.



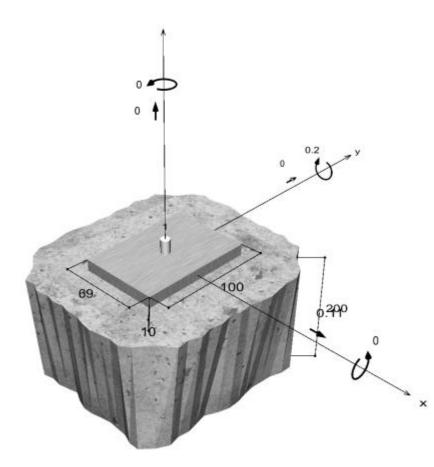
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	9
Date:	By:
20/07/2020	R.F.

Case Study 02:

Sketch - 25.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 6030:

NOTE:

• Combined Deflection 3.58mm (Shoe) plus 7.19mm (Glass) = 10.77mm OK in deflection

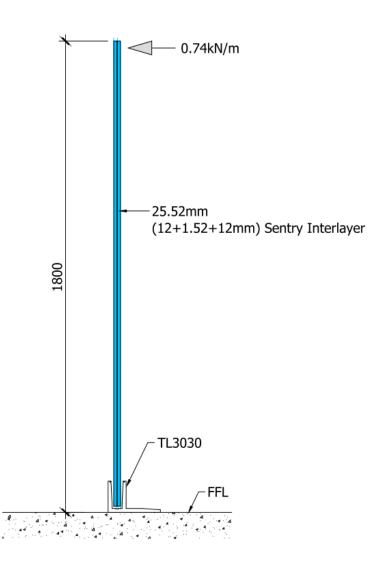

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	10
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 0.74kN/m × 1.5×0.1 m = 0.111kN (ULS)

Maximum Moment = 0.74kN/m × 1.5 × 0.1m × 1.8m = 0.2kN (ULS)

Therefore use 1Nr FH II 12/15 SK, Zinc Plated Steel @100mm C/C. See design in Appendix C.



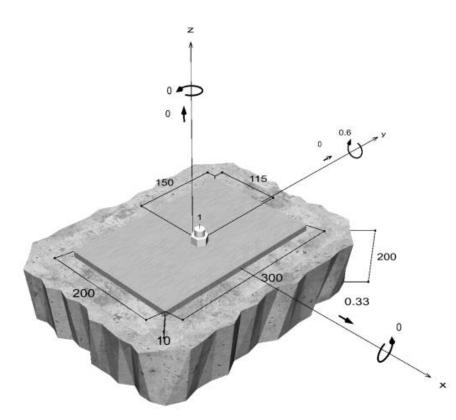
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	11
Date:	By:
20/07/2020	R.F.

Case Study 03:

Sketch - 25.52mm – 0.74kN/m (Glass) Sentry Interlayer and TL 3030:

NOTE:

• Combined Deflection 3.72mm (Shoe) plus 7.19mm (Glass) = 10.91mm OK in deflection

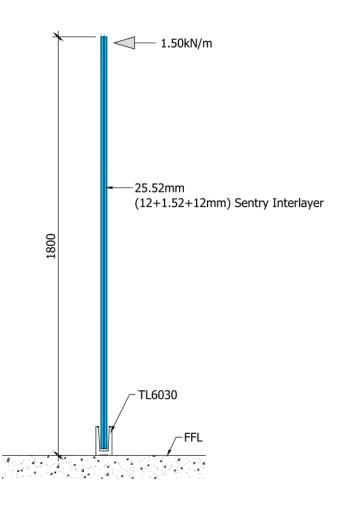

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	12
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 0.74kN/m × 1.5 × 0.3m = 0.333kN (ULS)

Maximum Moment = 0.74kN/m × 1.5×0.3 m × 1.8m = 0.6kN (ULS)

Therefore use 1Nr FAZ II 16/25, Zinc Plated Steel @300mm C/C. See design in Appendix C.



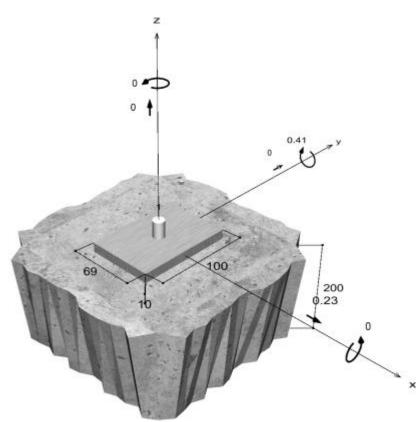
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	13
Date:	By:
20/07/2020	R.F.

Case Study 04:

Sketch - 25.52mm – 1.5kN/m (Glass) Sentry Interlayer and TL 6030:

NOTE:

• Combined Deflection 7.26mm (Shoe) plus 14.57mm (Glass) = 21.83mm OK in deflection

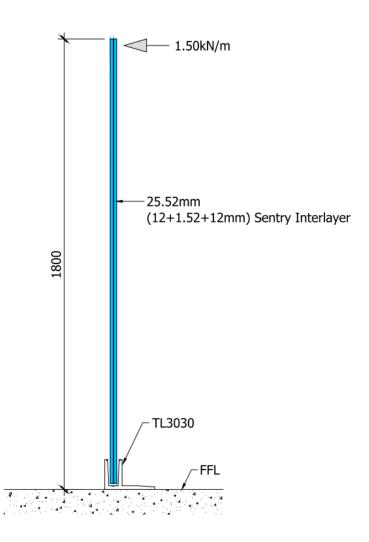

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	14
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 1.5kN/m × 1.5 × 0.1m = 0.23kN (ULS)

Maximum Moment = 1.5kN/m × 1.5 × 0.1m × 1.8m = 0.41kN (ULS)

Therefore use 1Nr FH II 18/25, SK, Zinc Plated Steel @100mm C/C. See design in Appendix C.



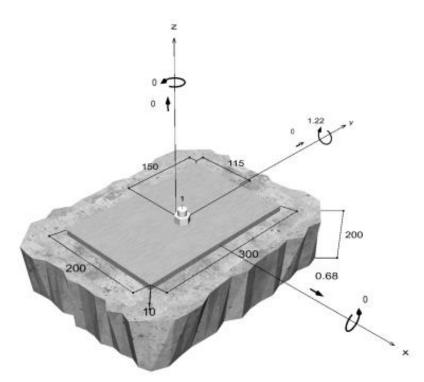
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	15
Date:	By:
20/07/2020	R.F.

Case Study 05:

Sketch - 25.52mm – 1.5kN/m (Glass) Sentry Interlayer and TL 3030:

NOTE:

• Combined Deflection 7.53mm (Shoe) plus 14.57mm (Glass) = 22.10mm OK in deflection

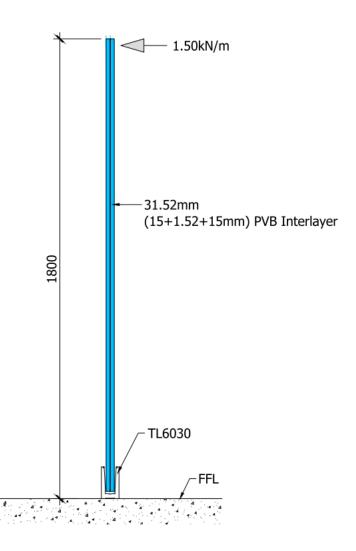

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	16
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 1.5kN/m × 1.5 × 0.3m = 0.0.675kN (ULS)

Maximum Moment = 1.5kN/m × 1.5 × 0.3m × 1.8m = 1.22kN (ULS)

Therefore use 1Nr FAZ II 16/25, Zinc Plated Steel @300mm C/C. See design in Appendix C.



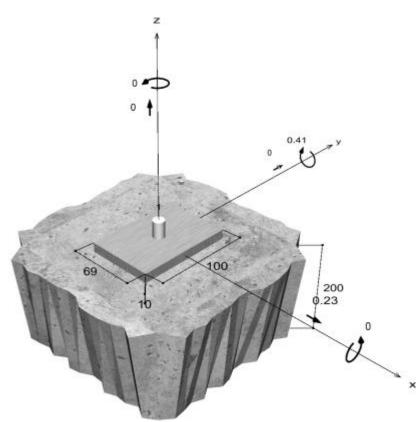
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	17
Date:	By:
20/07/2020	R.F.

Case Study 06:

Sketch - 31.52mm – 1.5kN/m (Glass) PVB Interlayer and TL 6030:

NOTE:

• Combined Deflection 7.26mm (Shoe) plus 11.39mm (Glass) = 18.65mm OK in deflection

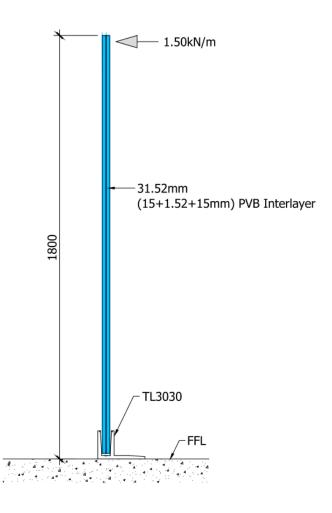

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	18
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 1.5kN/m × 1.5 × 0.1m = 0.23kN (ULS)

Maximum Moment = 1.5kN/m × 1.5 × 0.1m × 1.8m = 0.41kN (ULS)

Therefore use 1Nr FH II 18/25, SK, Zinc Plated Steel @100mm C/C. See design in Appendix C.



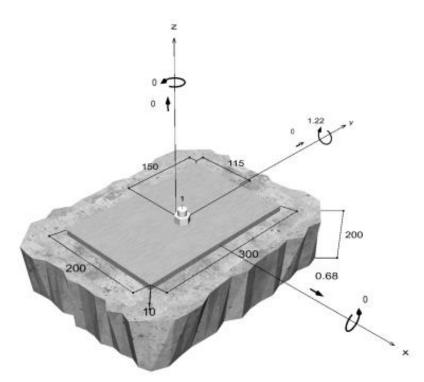
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	19
Date:	By:
20/07/2020	R.F.

Case Study 07:

Sketch - 31.52mm – 1.5kN/m (Glass) PVB Interlayer and TL 3030:

NOTE:

• Combined Deflection 7.53mm (Shoe) plus 11.39mm (Glass) = 18.92mm OK in deflection

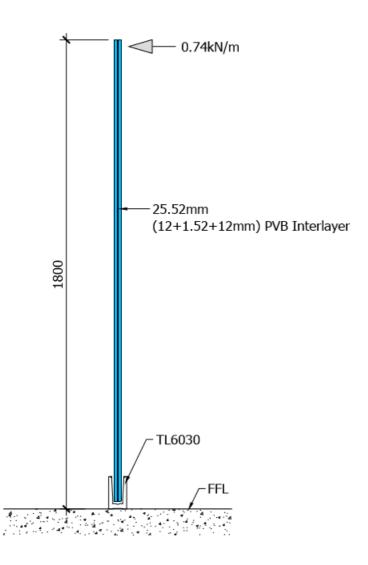

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	20
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 1.5kN/m × 1.5 × 0.3m = 0.0.675kN (ULS)

Maximum Moment = 1.5kN/m × 1.5 × 0.3m × 1.8m = 1.22kN (ULS)

Therefore use 1Nr FAZ II 16/25, Zinc Plated Steel @300mm C/C. See design in Appendix C.



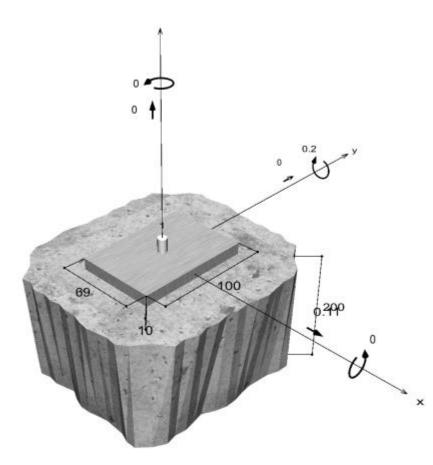
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	21
Date: 20/07/2020	By: R.F.

Case Study 08:

Sketch - 25.52mm – 0.74kN/m (Glass) PVB Interlayer and TL 6030:

NOTE:

• Combined Deflection 3.58mm (Shoe) plus 16.18mm (Glass) = 19.76mm OK in deflection

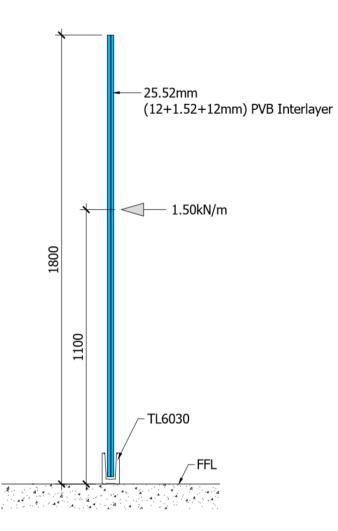

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	22
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 0.74kN/m × 1.5 × 0.1m = 0.111kN (ULS)

Maximum Moment = 0.74kN/m × 1.5 × 0.1m × 1.8m = 0.2kN (ULS)

Therefore use 1Nr FH II 12/15 SK, Zinc Plated Steel @100mm C/C. See design in Appendix C.



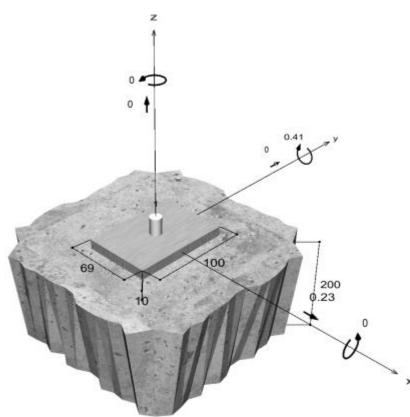
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	23
Date: 20/07/2020	By: R.F.

Case Study 09:

Sketch - 25.52mm – 1.5kN/m (Glass) PVB Interlayer at 1.1m above the FFL and TL 6030:

NOTE:

• Combined Deflection 7.26mm (Shoe) plus 14.07mm (Glass) = 21.33mm OK in deflection


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	24
Date:	By:
20/07/2020	R.F.

Loading at Connection:

Shear Load = 1.5kN/m × 1.5 × 0.1m = 0.23kN (ULS)

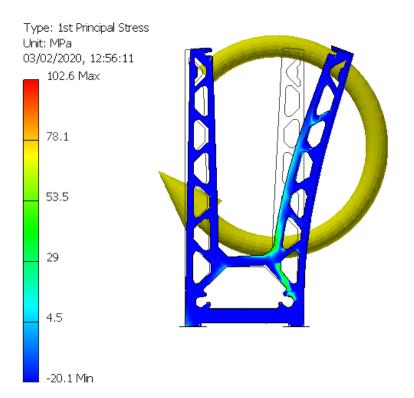
Maximum Moment = 1.5kN/m × 1.5 × 0.1m × 1.8m = 0.41kN (ULS)

Therefore use 1Nr FH II 18/25, SK, Zinc Plated Steel @100mm C/C. See design in Appendix C.

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	25
Date: 20/07/2020	By: R.F.

Appendix A - Shoe Analysis

TSA provided 03 types of Shoe Analysis below

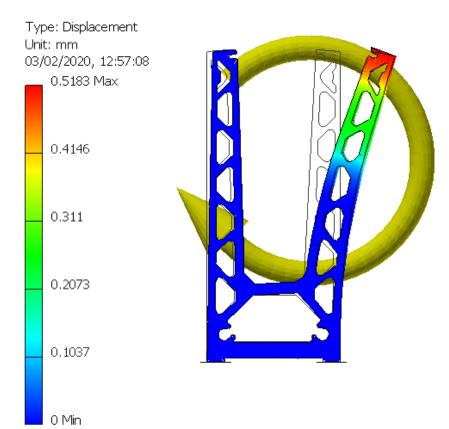

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	26
Date:	By:
20/07/2020	R.F.
20/07/2020	R.F.

Shoe Analysis TL 6020 – 0.74kN/m

Shoe Analysis TL 6020 – Bending Stress (0.74kN/m):

Max. Bending Stress = 102.6 N/mm² x1.5 = 153.9 N/mm² < 180 N/mm²

Okay in Bending

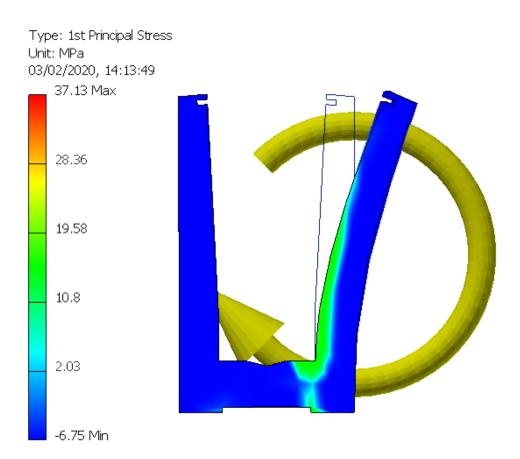

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	27
Date:	By:
20/07/2020	R.F.

Shoe Analysis TL 6020 – Deflection (0.74kN/m):

Deflection

X = (0.5183 x 1800)/140 = 6.67mm

Okay in Deflection

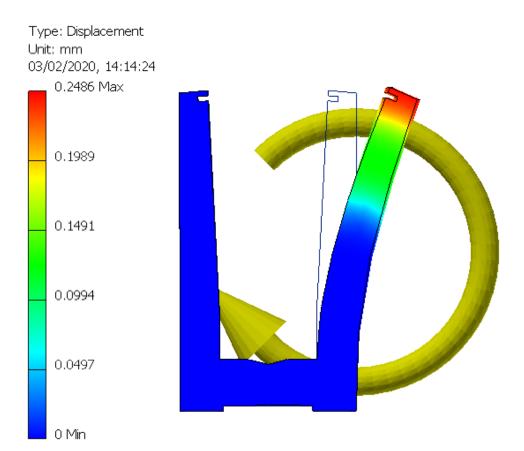

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	28
Date: 20/07/2020	By: R.F.

Shoe Analysis TL 6030 – 0.74kN/m

Shoe Analysis TL 6030 – Bending Stress (0.74kN/m):

Max. Bending Stress = 37.13N/mm² x1.5 = 55.70N/mm² < 180N/mm²

Okay in Bending

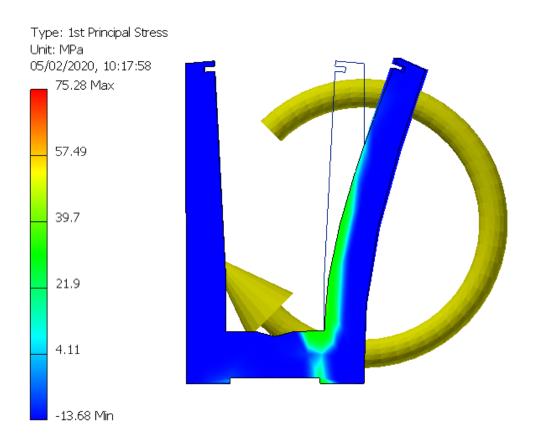

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	29
Date:	By:
20/07/2020	R.F.

Shoe Analysis TL 6030 – Deflection (0.74kN/m):

Deflection

X = (0.2486 x 1800)/125 = 3.58mm

Okay in Deflection

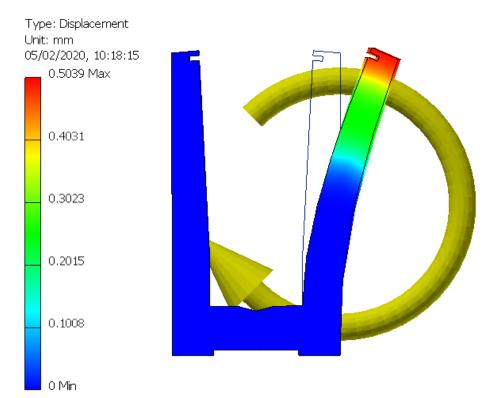

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	30
Date:	By:
20/07/2020	R.F.

Shoe Analysis TL 6030 – 1.5kN/m

Shoe Analysis TL 6030 – Bending Stress (1.5kN/m):

Max. Bending Stress = 75.28N/mm² x1.5 = 112.92N/mm² < 180N/mm²

Okay in Bending


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	31
Date: 20/07/2020	By: R.F.

Shoe Analysis TL 6030 – Deflection (1.5kN/m):

Deflection

X = (0.5039 x 1800)/125 = 7.26mm

Okay in Deflection

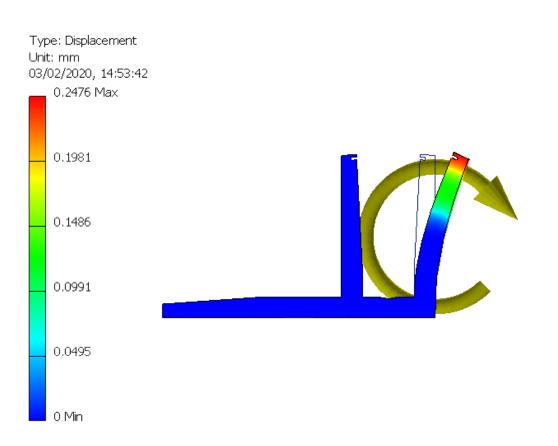
Contract:
1348-1
Sheet No.
32
By:
R.F.

Shoe Analysis TL 3030 – 0.74kN/m

Shoe Analysis TL 3030 – Bending Stress (0.74kN/m):

Max. Bending Stress = 51.94N/mm² x1.5 = 77.91N/mm² < 180N/mm²

Okay in Bending

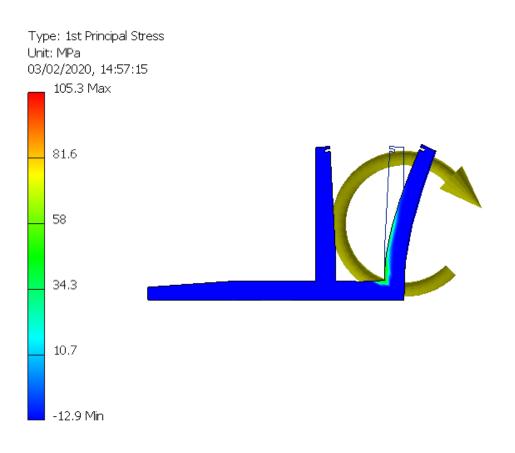


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	33
Date: 20/07/2020	By: R.F.

Shoe Analysis TL 3030 – Deflection (0.74kN/m):

Deflection X = (0.2476 x 1800)/120 = 3.72mm

Okay in Deflection

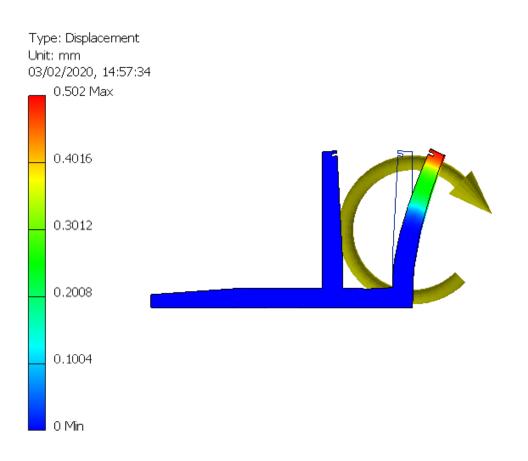

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	34
Date:	By:
20/07/2020	R.F.

Shoe Analysis TL 3030 – 1.5kN/m

Shoe Analysis TL 3030 – Bending Stress (1.5kN/m):

Max. Bending Stress = 105.3 N/mm² x1.5 = 157.95 N/mm² < 180 N/mm²

Okay in Bending



Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	35
Date: 20/07/2020	By: R.F.

Shoe Analysis TL 3030 – Deflection (1.5kN/m):

Deflection X = (0.502 x 1800)/120 = 7.53mm

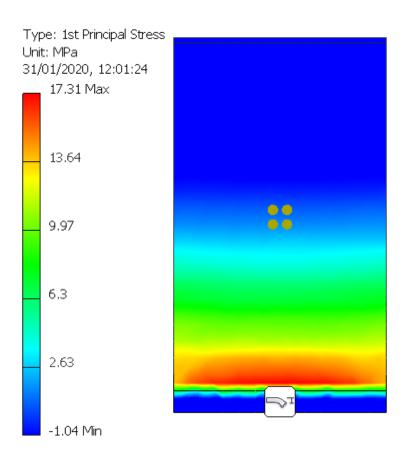
Okay in Deflection

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	36
Date: 20/07/2020	By: R.F.

Appendix B – Glass Analysis

TSA provided 03 types of Glass Analysis below

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	37	
Date:	By:	
20/07/2020	R.F.	


21.52mm Glass Analysis – 0.74kN/m Sentry Interlayer

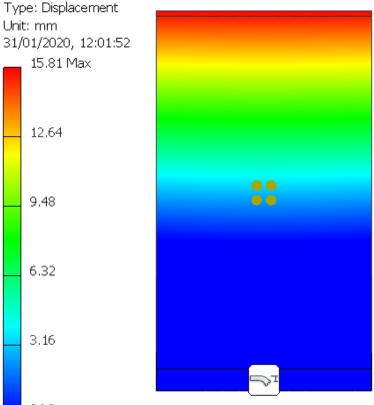
Glass Analysis - Bending Stress of Glass Panel due to 1.0kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 17.31N/mm² x1.5 = 25.97N/mm² < 84.2N/mm²

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	38	
Date:	By:	
20/07/2020	R.F.	


Glass Analysis - Deflection of Glass Panel due to 1.0kN/m2 Infill Loading:

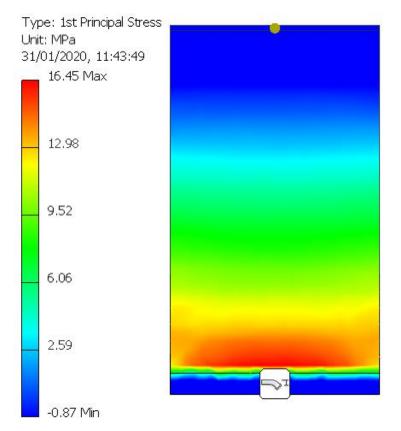
- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 15.81mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

0 Min


Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	39	
Date: 20/07/2020	By: R.F.	

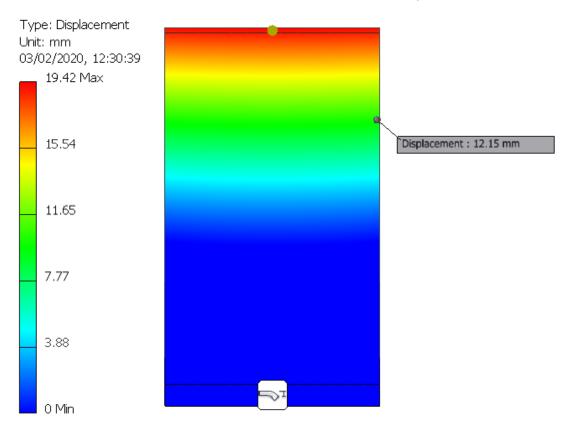
Glass Analysis - Bending Stress of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 16.45N/mm² x1.5 = 24.68N/mm² < 84.2N/mm²

\leq	
	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

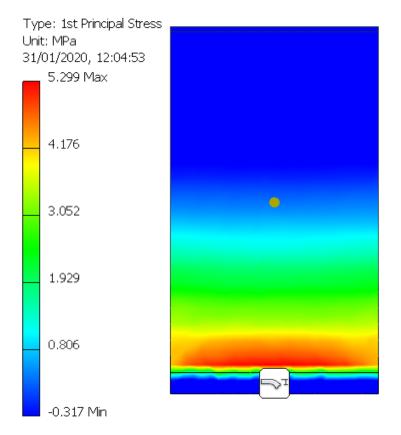

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	40
Date:	By:
20/07/2020	R.F.

Glass Analysis - Deflection of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 19.42mm < 25mm {BS6180:2011 cl. 6.4.1}


Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	41	
Date:	By:	
20/07/2020	R.F.	

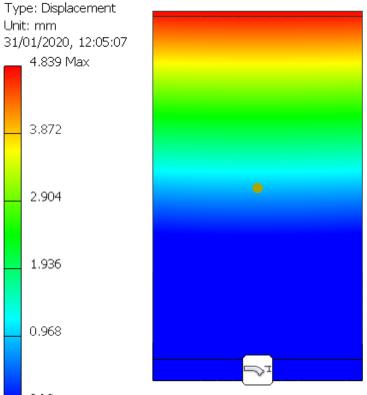
Glass Analysis - Bending Stress of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN/m Point Load
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 5.299N/mm² x1.5 = 7.95N/mm² < 84.2N/mm²

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	42	
Date:	By:	
20/07/2020	R.F.	


Glass Analysis - Deflection of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN/m Point Load
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m •

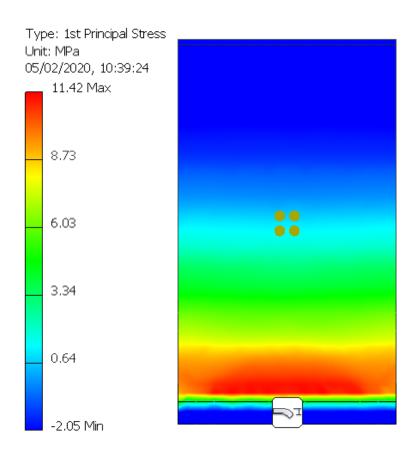
Result:

Max. Deflection = 4.839mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

0 Min

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	43	
Date:	By:	
20/07/2020	R.F.	

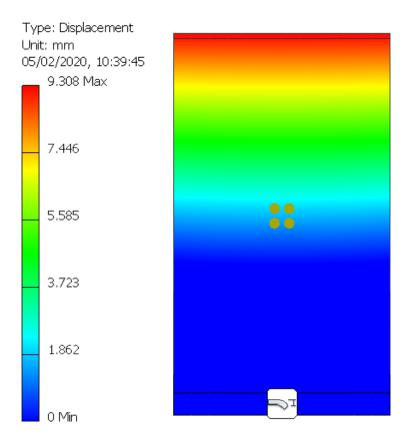

25.52mm Glass Analysis – 0.74kN/m Sentry Interlayer

Glass Analysis - Bending Stress of Glass Panel due to 1.0kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 11.42N/mm² x1.5 = 17.13N/mm² < 84.2N/mm²

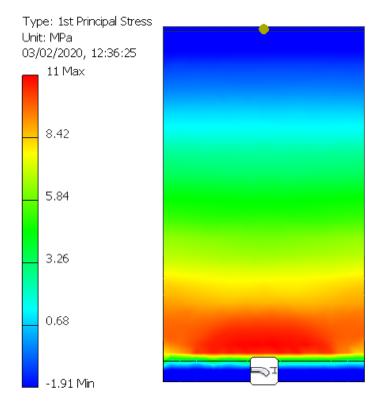

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	44	
Date:	By:	
20/07/2020	R.F.	

Glass Analysis - Deflection of Glass Panel due to 1.0kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 9.308mm < 25mm {BS6180:2011 cl. 6.4.1}


Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	45	
Date:	By:	
20/07/2020	R.F.	

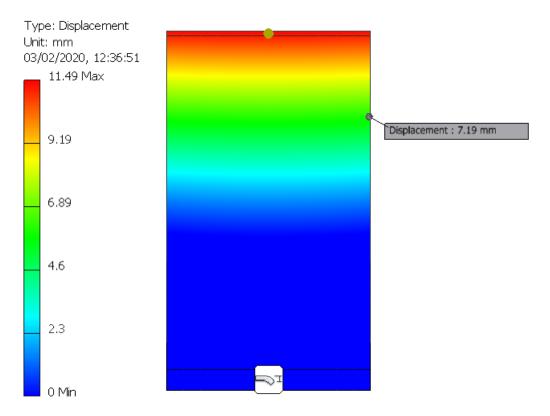
Glass Analysis - Bending Stress of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = $11N/mm^2 \times 1.5 = 16.50N/mm^2 < 84.2N/mm^2$

~	
S	ISA
ST.	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\checkmark	CONSULTING ENGINEERS

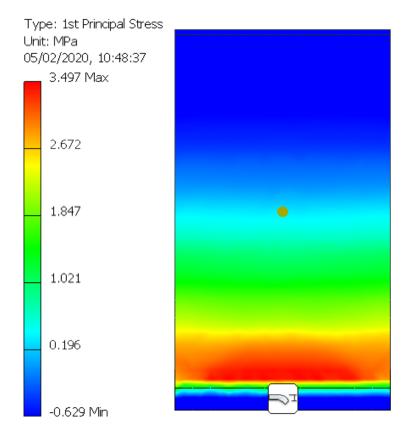

Project:	Contract:	
Privacy Screen	1348-1	
Subject:	Sheet No.	
Glass Balustrade	46	
Date:	By:	
20/07/2020	R.F.	

Glass Analysis - Deflection of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 11.49mm < 25mm {BS6180:2011 cl. 6.4.1}

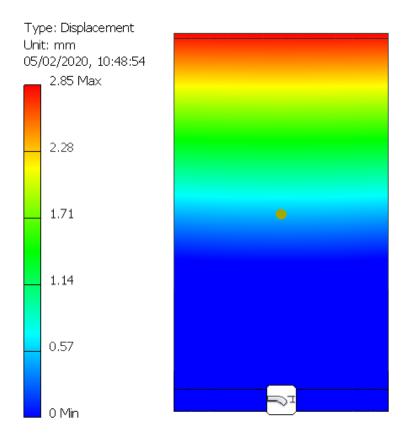

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	47
Date:	By:
20/07/2020	R.F.

Glass Analysis - Bending Stress of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 3.497N/mm² x1.5 = 5.2455N/mm² < 84.2N/mm²


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	48
Date:	By:
20/07/2020	R.F.

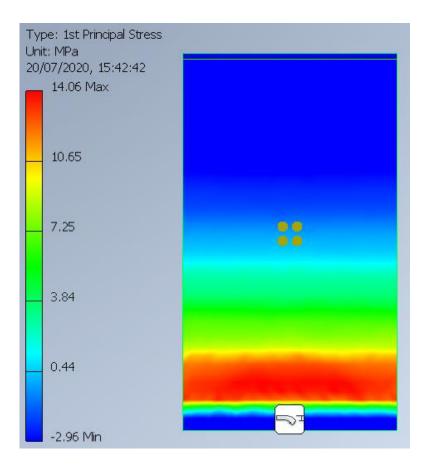
Glass Analysis - Deflection of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 2.85mm < 25mm {BS6180:2011 cl. 6.4.1}

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	49
Date:	By:
20/07/2020	R.F.

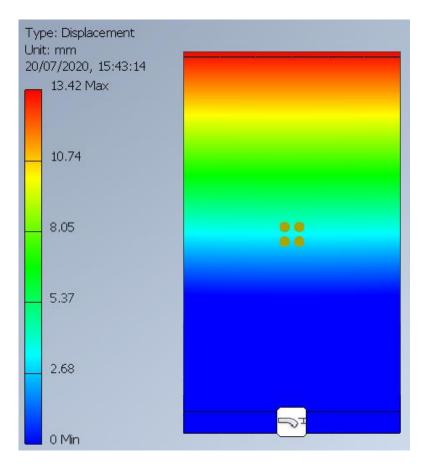

25.52mm Glass Analysis – 0.74kN/m PVB Interlayer

Glass Analysis - Bending Stress of Glass Panel due to 1.0kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 14.06N/mm² x1.5 = 21.09N/mm² < 84.2N/mm²

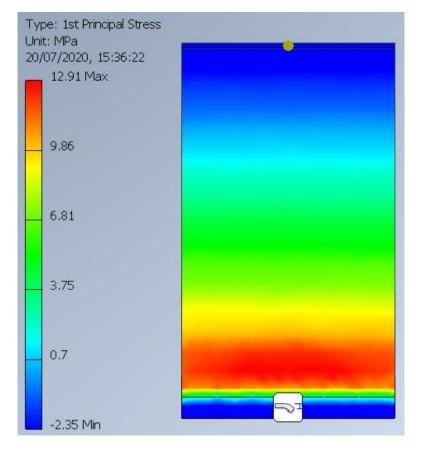

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	50
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 1.0kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.0N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 13.42mm < 25mm {BS6180:2011 cl. 6.4.1}


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	51
Date:	By:
20/07/2020	R.F.

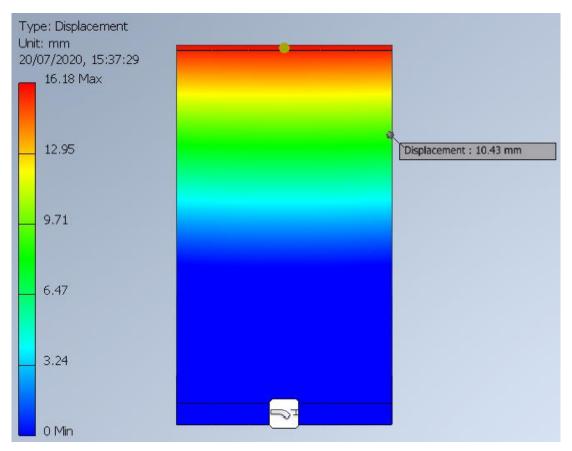
Glass Analysis - Bending Stress of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 12.91N/mm² x1.5 = 19.365N/mm² < 84.2N/mm²

~	
S	ISA
ST.	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS
\checkmark	CONSULTING ENGINEERS

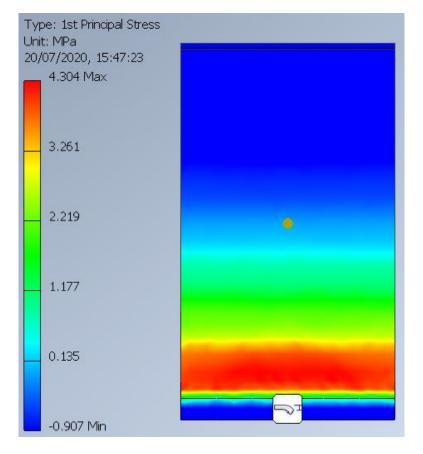

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	52
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 16.18mm < 25mm {BS6180:2011 cl. 6.4.1}

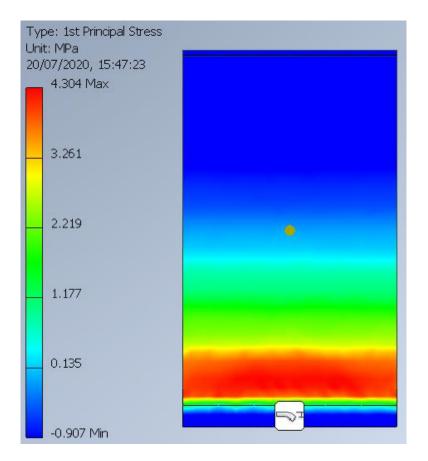

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	53
Date: 20/07/2020	By: R.F.

Glass Analysis - Bending Stress of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 4.304 N/mm² x1.5 = 6.456 N/mm² < 84.2 N/mm²


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	54
Date: 20/07/2020	By: R.F.

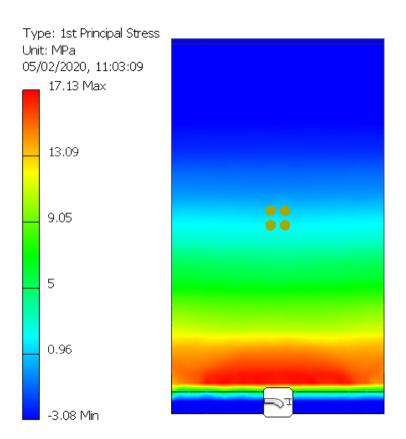
Glass Analysis - Deflection of Glass Panel due to 0.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 4.304mm < 25mm {BS6180:2011 cl. 6.4.1}

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	55
Date: 20/07/2020	By: R.F.


25.52mm Glass Analysis – 1.5kN/m Sentry Interlayer

Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 17.13N/mm² x1.5 = 25.70N/mm² < 84.2N/mm²

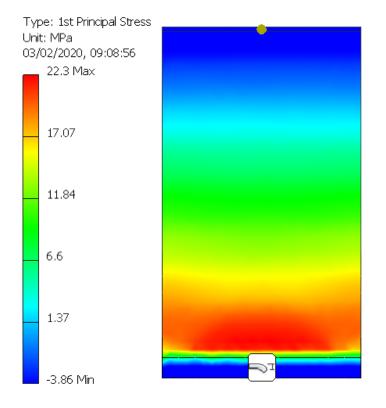
Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	56
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 13.96mm < 25mm {BS6180:2011 cl. 6.4.1}


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	57
Date:	By:
20/07/2020	R.F.

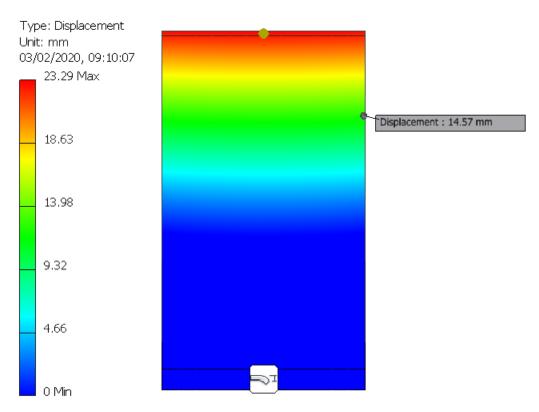
Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 22.3N/mm² x1.5 = 33.45N/mm² < 84.2N/mm²

	TSA
S	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

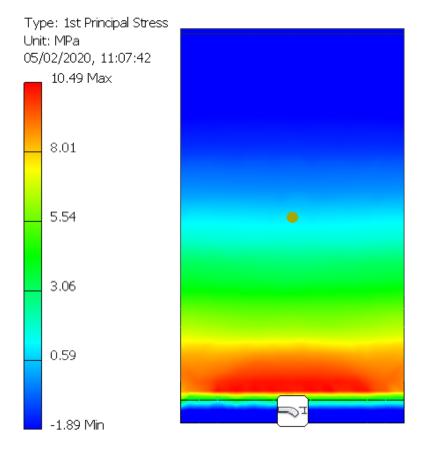

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	58
Date:	By:
20/07/2020	R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 23.29mm < 25mm {BS6180:2011 cl. 6.4.1}

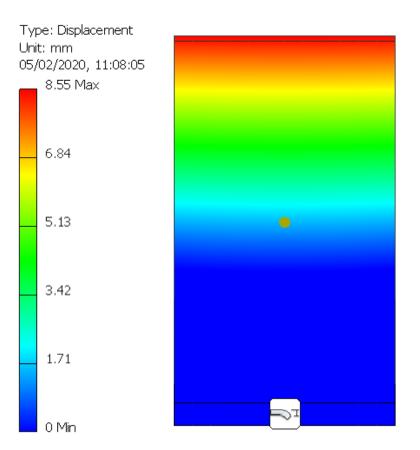

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	59
Date: 20/07/2020	By: R.F.

Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 10.49N/mm² x1.5 = 15.74N/mm² < 84.2N/mm²


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	60
Date: 20/07/2020	By: R.F.

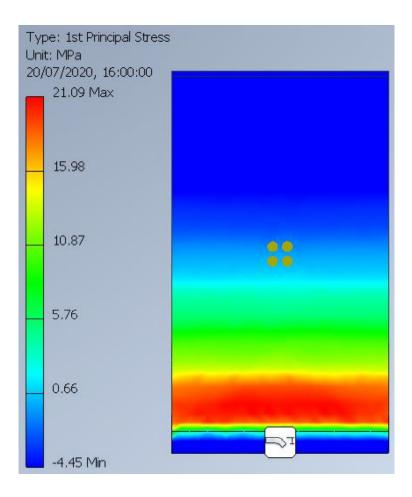
Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 1.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 606 MPa, G = 203.36MPa Sentry Glass SG5000
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 8.55mm < 25mm {BS6180:2011 cl. 6.4.1}

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	61
Date:	By:
20/07/2020	R.F.


25.52mm Glass Analysis – 1.5kN/m PVB Interlayer at 1.1m above FFL

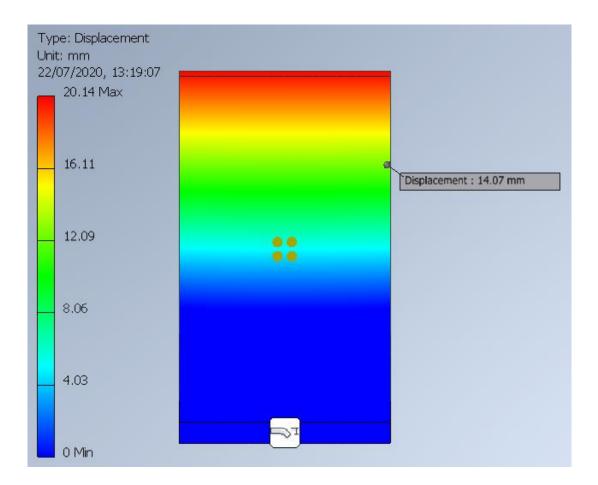
Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 21.09N/mm² x1.5 = 31.64N/mm² < 84.2N/mm²

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	62
Date: 20/07/2020	By: R.F.


Glass Analysis - Deflection of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

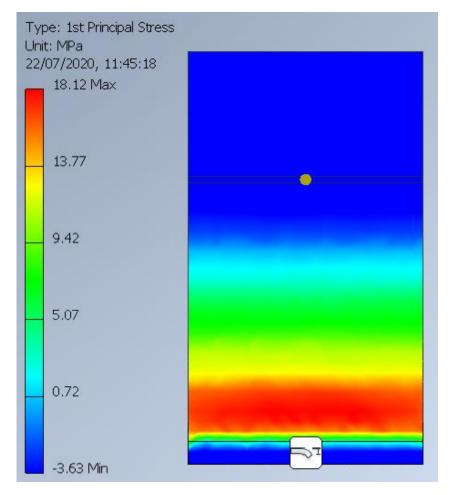
Result:

Max. Deflection = 14.07mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

NOTE:

The most appropriate deflection to be considered is 14.07mm at 1100mm above the FFL.


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	63
Date:	By:
20/07/2020	R.F.

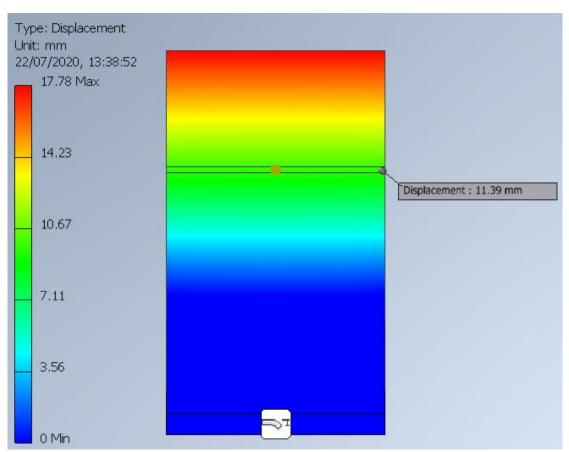
Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 18.12N/mm² x1.5 = 27.18N/mm² < 84.2N/mm²

	ITSA
Z	TED SINGLETON 양 ASSOCIATES CONSULTING ENGINEERS


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	64
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

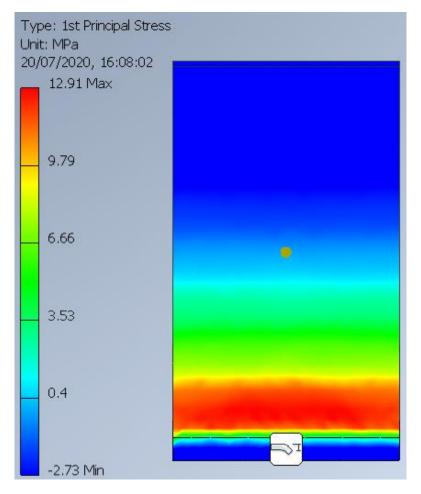
Result:

Max. Deflection = 11.39mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

NOTE:

The most appropriate deflection to be considered is 11.39mm at 1100mm above the FFL.

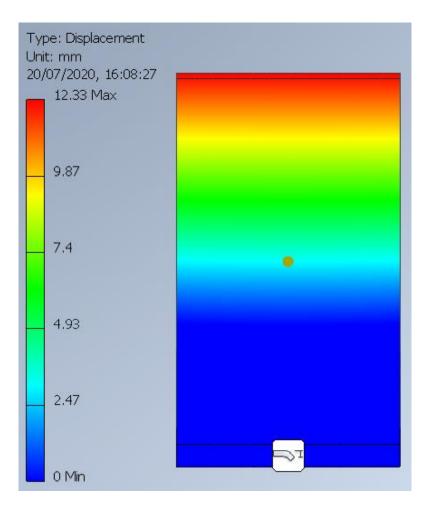

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	65
Date: 20/07/2020	By: R.F.

Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 12.91N/mm² x1.5 = 19.37N/mm² < 84.2N/mm²


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	66
Date: 20/07/2020	By: R.F.

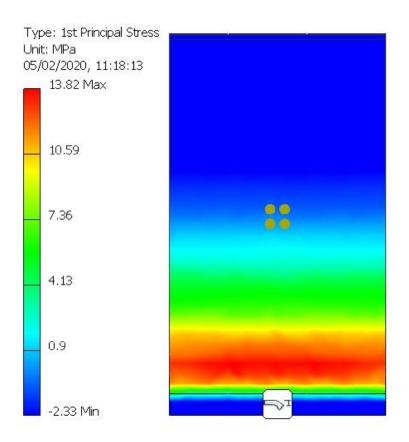
Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 1.5kN/m Point Load
- 12/12/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 12.33mm < 25mm {BS6180:2011 cl. 6.4.1}

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	67
Date:	By:
20/07/2020	R.F.

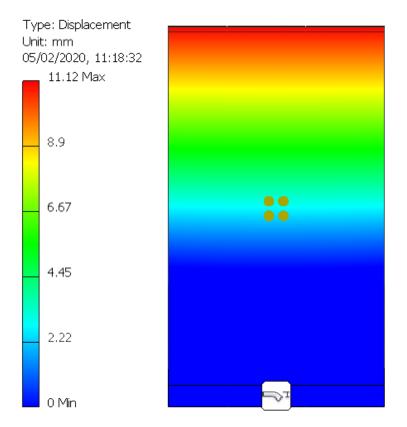

31.52mm Glass Analysis – 1.5kN/m PVB Interlayer

Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 13.82N/mm² x1.5 = 20.73N/mm² < 84.2N/mm²

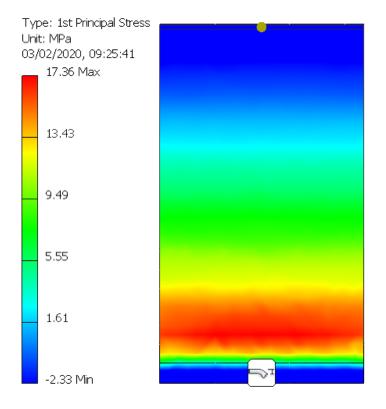

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	68
Date:	By:
20/07/2020	R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m2 Infill Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5N/m2 Infill Loading
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 11.12mm < 25mm {BS6180:2011 cl. 6.4.1}


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	69
Date:	By:
20/07/2020	R.F.

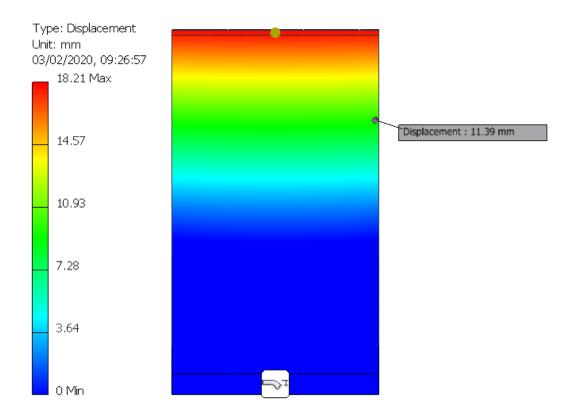
Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 17.36N/mm² x1.5 = 26.04N/mm² < 84.2N/mm²

\frown	
\triangleleft	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

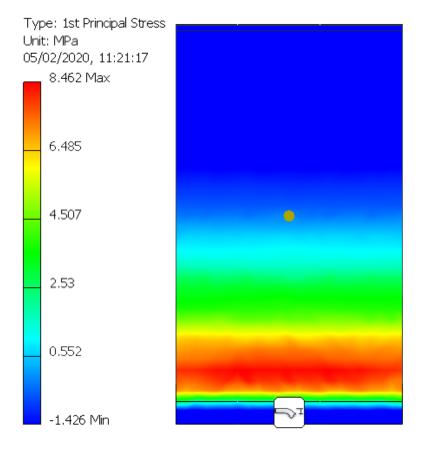

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	70
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Balustrade Loading
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 18.21mm < 25mm {BS6180:2011 cl. 6.4.1}

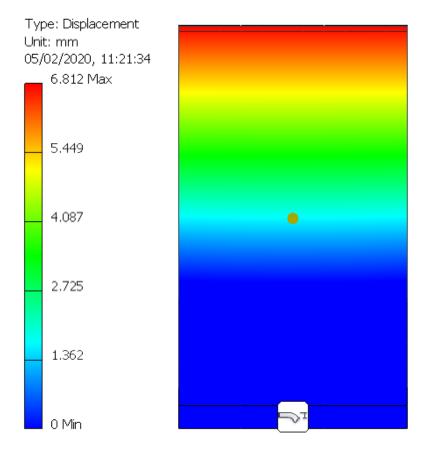

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	71
Date: 20/07/2020	By: R.F.

Glass Analysis - Bending Stress of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 1.5kN/m Point Load
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Bending Stress = 8.462N/mm² x1.5 = 12.693N/mm² < 84.2N/mm²


Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	72
Date: 20/07/2020	By: R.F.

Glass Analysis - Deflection of Glass Panel due to 1.5kN/m Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 1.5kN/m Point Load
- 15/15/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 3MPa, G = 1MPa, PVB
- Bending Stress analysed based on glass panel of 1.0m x 1.8m

Result:

Max. Deflection = 6.812mm < 25mm {BS6180:2011 cl. 6.4.1}

Project:	Contract:
Privacy Screen	1348-1
Subject:	Sheet No.
Glass Balustrade	73
Date: 20/07/2020	By: R.F.

Appendix C -Fiscer Reports

TSA is Both the Designer and the Specifier of the Fixings.

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

Comment

Case 1

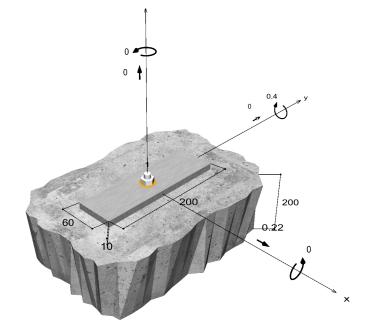
Design Specifications

Anchor

Anchor system Injection resin Fixing element fischer Injection system FIS V FIS V 360 S Threaded rod FIS A M 10 x 150 8.8, zinc plated steel, property class 8.8 107 mm

Calculated anchorage depth Design Data

Anchor design in Concrete according European Technical Assessment ETA-02/0024, Option 1, Issued 02/01/2020


Geometry / Loads / Scale units

mm, kN, kNm

Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method Base material Concrete condition Temperature range Reinforcement	Design Method EN1992-4:2018 bonded fastener Normal weight concrete, C30/37, EN 206 Cracked, dry hole 24 °C long term temperature, 40 °C short term temperature No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	60 mm x 200 mm x 10 mm
Profile type	None

Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M_{Ed,x} kNm	M_{Ed,y} kNm	М т, _{Еd} kNm	Type of loading
1	0.00	0.22	0.00	0.00	0.40	0.00	Static or quasi-static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action kN	Shear Action kN	Shear Action x kN	Shear Action y kN
1	14.79	0.22	0.22	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.51 ‰ 16.7 N/mm² 14.79 kN , X/Y position (0/0) 14.79 kN , X/Y position (27/0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	14.79	31.33	47.2
Combined pull-out and concrete cone failure	14.79	14.79	100.0
Concrete cone failure	14.79	57.00	25.9

* Most unfavourable anchor

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	ΎMs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
47.00	1.50	31.33	14.79	47.2

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	47.2	1	β _{N,s;1}

Combined pull-out and concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,p}}{\gamma_{Mp}}$$
 (N_{Rd,p})

$$N_{Rk,p} = N_{Rk,p}^{0} \cdot \frac{A_{p,N}}{A_{p,N}^{0}} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{ec,Np} \cdot \Psi_{re,Np}$$

$$Eq. (7.13)$$

$$N_{Rk,p} = 22.19kN \cdot \frac{58,564mm^2}{58,564mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 = 22.19kN$$

$$N_{Rk,p}^{0} = \Psi_{sus} \cdot \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = 1.00 \cdot \pi \cdot 10mm \cdot 107mm \cdot 6.6N/mm^{2} = 22.19kN$$
Eq. (7.14)

$$\Psi_{sus} = 1.00$$

 $\alpha_{sus} = 0.00 \le \Psi_{sus}^0 = 0.74$
Eq. (7.14a)

$$s_{cr,Np} = min\left(7.3 \cdot d \cdot \left(\Psi_{sus} \cdot \tau_{Rk,ucr}\right)^{0.5}; 3 \cdot h_{ef}\right)$$
Eq. (7.15)

$$s_{cr,Np} = min \Big(7.3 \cdot 10mm \cdot \Big(1.00 \cdot 11.0N/mm^2 \Big)^{0.5}; \ 3 \cdot 107mm \Big) = 242mm$$

$$S_{cr,Np} = 242mm$$

$$c_{cr,Np} = \frac{S_{cr,Np}}{2} = \frac{242mm}{2} = 121mm$$
 Eq. (7.16)

$$\Psi_{s,Np} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{121mm}\right) = 1.000 \le 1$$

$$\Psi_{g,Np} = max \left(1; \Psi_{g,Np}^{0} - \sqrt{\frac{s}{s_{cr,Np}}} \cdot \left(\Psi_{g,Np}^{0} - 1\right)\right) = 1.000 - \sqrt{\frac{0mm}{242mm}} \cdot \left(1.000 - 1\right) = 1.000 \ge 1$$

$$\Psi_{g,Np}^{0} = max \left(1; \sqrt{n} - \left(\sqrt{n} - 1\right) \cdot \left(\frac{\tau_{Rk}}{\tau_{Rk,c}}\right)^{1.5}\right)$$
 Eq. (7.18)

$$\begin{split} \Psi_{g,Np}^{0} &= max \Big(1; \ \sqrt{1} - \Big(\sqrt{1} - 1\Big) \cdot \Big(\frac{6.6N/mm^{2}}{13.9N/mm^{2}}\Big)^{1.5}\Big) = 1.000 \ \ge \ 1\\ \tau_{Rk,c} &= \frac{k_{3}}{\pi \cdot d} \sqrt{h_{ef} \cdot f_{ck}} = \frac{7.7}{3.14 \cdot 10mm} \sqrt{107mm \cdot 30.0N/mm^{2}} = 13.9N/mm^{2} \end{split}$$
 Eq. (7.19)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$\begin{split} \Psi_{ec,Np} &= \frac{1}{1 + \frac{2e_n}{s_{cr,Np}}} = \Psi_{ec,Npx} \cdot \Psi_{ec,Npy} = 1.000 \cdot 1.000 = 1.000 \leq 1 \\ \Psi_{ec,Npx} &= \frac{1}{1 + \frac{2 \cdot 0mm}{242mm}} = 1.000 \leq 1 \quad \Psi_{ec,Npy} = \frac{1}{1 + \frac{2 \cdot 0mm}{242mm}} = 1.000 \leq 1 \end{split}$$

 $\Psi_{re,Np}~=~1.000$

N _{Rk,p} kN	ү мр	N _{Rd,p} kN	N _{Ed} kN	β _{Ν,Ρ} %
22.19	1.50	14.79	14.79	100.0

Anchor no.	β _{Ν,Ρ} %	Group N°	Decisive Beta
1	100.0	1	β _{N,p;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

$N_{Rk,c} \;=\; N^0_{Rk,c} \cdot rac{A_{c,N}}{A^0_{c,N}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$	Eq. (7.1)
--	-----------

$$N_{Rk,c} = 46.68kN \cdot \frac{103,041mm^2}{103,041mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.831 = 85.49kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(107mm\right)^{1.5} = 46.68kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{161mm}\right) = 1.000 \le 1$$
 Eq. (7.4)

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{321mm}} = 1.000 \le 1$$
 $\Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{321mm}} = 1.000 \le 1$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{27mm}{1.5 \cdot 107mm} = 1.83 \ge 1$$

N _{Rk,c} kN	Ү Мс	N _{Rd,c} kN	N _{Ed} kN	β _{Ν,c} %
85.49	1.50	57.00	14.79	25.9

Anchor no.	β _{Ν,c} %	Group N°	Decisive Beta
1	25.9	1	β _{N,c;1}

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.5)

Eq. (7.7)

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation βv %
Steel failure without lever arm *	0.22	18.40	1.2
Concrete pry-out failure	0.22	29.58	0.7

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_{Rd,s})

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 23.00 kN = 23.00 kN$$

V _{Rk,s}	Yмs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
23.00	1.25	18.40	0.22	1.2

Anchor no.	βvs %	Group N°	Decisive Beta
1	1.2	1	βvs;1

Concrete pry-out failure

$$V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$$
 (V_{Rd,cp})

$$V_{Rk,cp} = k_8 \cdot N_{Rk,p} = 2 \cdot 22.19 kN = 44.37 kN$$
Eq. (7.39c)
$$N_{Rk,p} = N_{Rk,p}^0 \cdot \frac{A_{p,N}}{A_{p,N}^0} \cdot \Psi_{s,Np} \cdot \Psi_{g,Np} \cdot \Psi_{ec,Np} \cdot \Psi_{re,Np}$$
Eq. (7.13)
$$N_{Rk,p} = 22.19 kN \cdot \frac{58,564 mm^2}{2} \cdot 1.000 \cdot 1.000 \cdot 1.000 = 22.19 kN$$

$$N_{Rk,p} = 22.19kN \cdot \frac{1000 \cdot 1000 \cdot 1000 \cdot 1000 \cdot 1000}{58,564mm^2} \cdot 1000 \cdot 1000 \cdot 1000 \cdot 1000 = 22.19kN$$

$$N_{Rk,p}^0 = \Psi_{sus} \cdot \pi \cdot d \cdot h_{ef} \cdot \tau_{Rk} = 1.00 \cdot \pi \cdot 10mm \cdot 107mm \cdot 6.6N/mm^2 = 22.19kN$$
Eq. (7.14)

$$\Psi_{sus} = 1.00$$
 Eq. (7.14a)

$$lpha_{sus} = 0.00 \leq \Psi_{sus}^0 = 0.74$$

$$\Psi_{s,Np} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,Np}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{121mm}\right) = 1.000 \le 1$$

$$\Psi_{g,Np} = max \Big(1; \ \Psi^0_{g,Np} - \sqrt{\frac{s}{s_{cr,Np}}} \cdot \Big(\Psi^0_{g,Np} - 1\Big)\Big)$$
 Eq. (7.17)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$\begin{split} \Psi_{g,Np} &= max \Big(1; \ 1.000 - \sqrt{\frac{0mm}{242mm}} \cdot \Big(1.000 - 1 \Big) \Big) = 1.000 \ge 1 \\ \Psi_{g,Np}^{0} &= max \Big(1; \ \sqrt{n} - \Big(\sqrt{n} - 1 \Big) \cdot \Big(\frac{\tau_{Rk}}{\tau_{Rk,c}} \Big)^{1.5} \Big) \\ \Psi_{g,Np}^{0} &= max \Big(1; \ \sqrt{1} - \Big(\sqrt{1} - 1 \Big) \cdot \Big(\frac{6.6N/mm^2}{13.9N/mm^2} \Big)^{1.5} \Big) = 1.000 \ge 1 \\ \tau_{Rk,c} &= \frac{k_3}{\pi \cdot d} \sqrt{h_{ef} \cdot f_{ck}} = \frac{7.7}{3.14 \cdot 10mm} \sqrt{107mm \cdot 30.0N/mm^2} = 13.9N/mm^2 \\ \Psi_{ec,Np} &= \frac{1}{1 + \frac{2e_n}{s_{gr,Np}}} = \Psi_{ec,Npx} \cdot \Psi_{ec,Npy} = 1.000 \cdot 1.000 = 1.000 \le 1 \end{split}$$

$$\Psi_{re,Np} = 1.000$$

Anchor no.	βv,cp %	Group N°	Decisive Beta
1	0.7	1	βv,cp;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βv %
Steel failure *	47.2	Steel failure without lever arm *	1.2
Combined pull-out and concrete cone failure	100.0	Concrete pry-out failure	0.7
Concrete cone failure	25.9		

* Most unfavourable anchor

Resistance to combined tensile and shear loads

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof

t = 10 mm

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.5)

Profile type

None

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

• For loads with momentum and tension forces load combinations without bending moment should also be checked.

Installation data

Anchor

Anchor system Injection resin

Fixing element

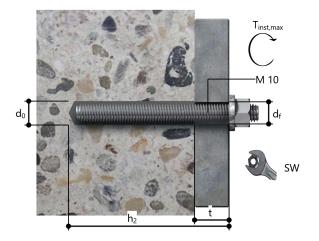
Accessories

fischer Injection system FIS V FIS V 360 S (other cartridge sizes available) Threaded rod FIS A M 10 x 150 8.8, zinc plated steel, property class 8.8

Dispenser FIS DM S Blow-out pump ABG big BSD 12 SDS Chuck with internal thread M8 SDS Plus II 12/150/210 or alternatively FHD 12/200/330 Hammer drilling with or without suction

Art.-No. 511118 Art.-No. 89300 Art.-No. 1490 Art.-No. 530332 Art.-No. 531804

Art.-No. 546597


Installation details

Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Drilling method Drill hole cleaning

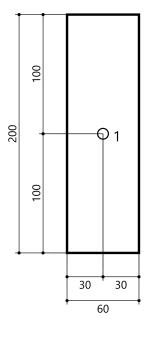
Installation type Annular gap Maximum torque Socket size Base plate thickness Total fixing thickness Tfix,max Volume of resin per drill hole M 10 $d_0 = 12 \text{ mm}$ $h_2 = 117 \text{ mm}$ $h_{ef} = 107 \text{ mm}$

hammer drilling 4 times blowing, 4 times brushing, 4 times brushing, 4 times blowing required activities according the given instruction in the approval No borehole cleaning required in case of using a hollow drill bit, e.g. fischer FHD. Push-through installation Annular gap filled $T_{inst,max} = 20.0 \text{ Nm}$ 17 mm t = 10 mm $t_{fix} = 10 \text{ mm}$

10 ml/5 scale divisions

Base plate details

Base plate material Base plate thickness Clearance hole in base plate Not available t = 10 mm d_f =14 mm


Attachment

Profile type

None

Anchor coordinates

Anchor no.	x mm	y mm
1	0	0

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

<u>Comment</u>

Case 2 & 8

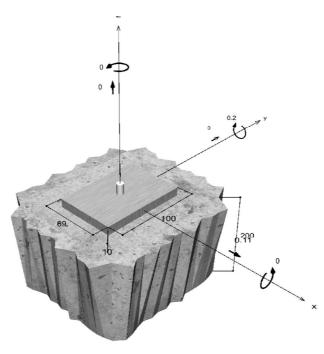
Design Specifications

Anchor

Anchor system Anchor Calculated anchorage depth Design Data fischer High performance anchor FH II High performance anchor FH II 12/15 SK, zinc plated steel 60 mm

Anchor design in Concrete according European Technical Assessment ETA-07/0025, Option 1, Issued 14/05/2018

🧐 (E


Geometry / Loads / Scale units

mm, kN, kNm

Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method Base material Concrete condition Reinforcement	Design Method EN1992-4:2018 mechanical fastener Normal weight concrete, C30/37, EN 206 Cracked, dry hole No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	69 mm x 100 mm x 10 mm
Profile type	None

Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M _{Ed,x} kNm	M_{Ed,y} kNm	М т, _{Ed} kNm	Type of loading
1	0.00	0.11	0.00	0.00	0.20	0.00	Static or quasi-static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action	Shear Action	Shear Action x	Shear Action y
	kN	kN	kN	kN
1	6.46	0.11	0.11	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.37 ‰ 12.2 N/mm² 6.46 kN , X/Y position (0/0) 6.46 kN , X/Y position (31/0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	6.46	19.53	33.1
Pullout failure *	6.46	9.76	66.2
Concrete cone failure	6.46	21.64	29.8

* Most unfavourable anchor

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
29.30	1.50	19.53	6.46	33.1

	β _{N,s}		
Anchor no.	%	Group N°	Decisive Beta
1	33.1	1	β _{N,s;1}

Pullout failure

$$N_{Ed}~\leq~rac{N_{Rk,p}}{\gamma_{Mp}}$$
 (N_{Rd,p})

N _{Rk,p} kN	Ψ _c	үм р	N _{Rd,p} kN	N _{Ed} kN	β _{Ν,Ρ} %
14.64	1.220	1.50	9.76	6.46	66.2

The given Psi,c-factor may has been determined by interpolation.

	β _{N,P}		
Anchor no.	%	Group N°	Decisive Beta
1	66.2	1	β _{N,p;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

 $\Psi_{re,N} = 1.000$

$$N_{Rk,c} \;=\; N^0_{Rk,c} \cdot rac{A_{c,N}}{A^0_{c,N}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$

$$N_{Rk,c} = 19.60kN \cdot \frac{32,400mm^2}{32,400mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.656 = 32.46kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(60mm\right)^{1.5} = 19.60kN$$
Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{90mm}\right) = 1.000 \le 1$$

Eq. (7.1)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1 \qquad \text{Eq. (7.6)}$$

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{180mm}} = 1.000 \le 1 \qquad \Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{180mm}} = 1.000 \le 1 \qquad \text{Eq. (7.7)}$$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{31mm}{1.5 \cdot 60mm} = 1.66 \ge 1 \qquad \text{Eq. (7.7)}$$

N _{Rk,c}	Yмс	N _{Rd,c}	Ν _{Ed}	β _{N,c}
kN		kN	kN	%
32.46	1.50	21.64	6.46	29.8

	β _{N,c}		
Anchor no.	%	Group N°	Decisive Beta
1	29.8	1	β _{N,c;1}

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation β _V %
Steel failure without lever arm *	0.11	26.40	0.4
Concrete pry-out failure	0.11	43.28	0.3

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_{Rd,s})

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 33.00 kN = 33.00 kN$$

V _{Rk,s}	Yмs	V _{Rd,s}	V _{Ed}	<mark>βvs</mark>
kN		kN	kN	%
33.00	1.25	26.40	0.11	0.4

Anchor no.	βvs %	Group N°	Decisive Beta
1	0.4	1	βvs;1

Concrete pry-out failure

 $V_{Ed} \leq \frac{V_{Rk,cp}}{c}$ (V_{Rd,cp}) γ_{Mc}

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.35)/ (7.36)

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 2 \cdot 32.46 kN = 64.91 kN$$
 Eq. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{rc,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 19.60kN \cdot \frac{32,400mm^2}{32,400mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.656 = 32.46kN$$

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{90mm}\right) = 1.000 \le 1$$

$$\Psi_{re,N} = 1.000$$
Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{31mm}{1.5 \cdot 60mm} = 1.66 \ge 1$$

V _{Rk,cp} kN	Ү мс	V _{Rd,cp} kN	V _{Ed} kN	β _{ν,cp} %
64.91	1.50	43.28	0.11	0.3

Anchor no.	β _{V,cp} %	Group N°	Decisive Beta
1	0.3	1	β∨,cp;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βγ %
Steel failure *	33.1	Steel failure without lever arm *	0.4
Pullout failure *	66.2	Concrete pry-out failure	0.3
Concrete cone failure	29.8		

* Most unfavourable anchor

Resistance to combined tensile and shear loads

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof

Profile type

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

 The factor ψM,N is taking into account the effect of a compression force between the fixture and concrete in case of bending moments with or without axial force. If the bending moment does not act continuously, please also check this load case. See EN 1992-4, 7.2.1.4 (7)

t = 10 mm

None

Installation data

Anchor

Anchor system

Anchor

fischer High performance anchor FH II High performance anchor FH II 12/15 SK, zinc plated steel

Accessories

Blow-out pump ABG big SDS Plus II 12/100/160 Erection of the drillhole by hammer drilling with or without suction

Art.-No. 89300 Art.-No. 531803

Installation details

Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Counter-sink size Drilling method Drill hole cleaning Installation type Annular gap Installation torque Internal hexagon socket size Base plate thickness Total fixing thickness Tfix,max

M 8 $d_0 = 12 \text{ mm}$ $h_2 = 95 \text{ mm}$ $h_{ef} = 60 \text{ mm}$

cleaning

 $h_{nom} = 60 \text{ mm}$ 22 mm x 6 mm hammer drilling only blow out by hand Push-through installation Annular gap not filled $T_{inst} = 22.5 \text{ Nm}$ 5 mm

t = 10 mm $t_{fix} = 10 \text{ mm}$ $t_{fix, max} = 15 \text{ mm}$

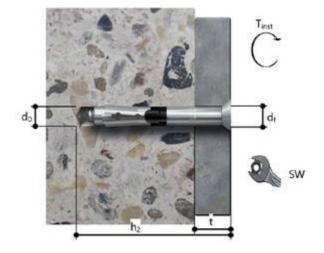
Not available

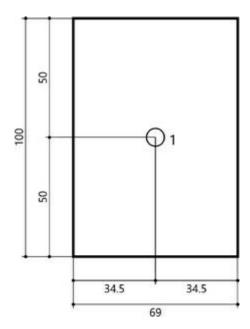
t = 10 mm

d_f=14 mm

Base plate details

Base plate material Base plate thickness Clearance hole in base plate


Attachment


Profile type

None

Anchor coordinates

	x	У
Anchor no.	mm	mm
1	0	0

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

Comment

Case 3

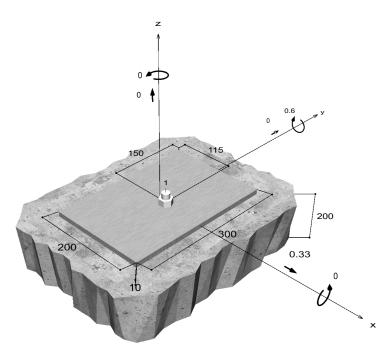
Design Specifications

<u>Anchor</u>

Anchor system Anchor Calculated anchorage depth Design Data fischer Bolt anchor FAZ II Bolt anchor FAZ II 16/25, zinc plated steel 65 mm

Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 03/07/2017

🛞 (CE


Geometry / Loads / Scale units

mm, kN, kNm

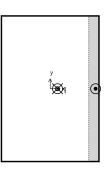
Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method Base material Concrete condition	Design Method EN1992-4:2018 mechanical fastener Normal weight concrete, C30/37, EN 206 Cracked, dry hole
Reinforcement	No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	200 mm x 300 mm x 10 mm
Profile type	None


Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M _{Ed,x} kNm	M_{Ed,y} kNm	М_{т,Ed} kNm	Type of loading
1	0.00	0.33	0.00	0.00	0.60	0.00	Static or quasi-static

 $^{\star)}$ The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action kN	Shear Action kN	Shear Action x kN	Shear Action y kN
1	7.68	0.33	0.33	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.08 ‰ 2.5 N/mm² 7.68 kN , X/Y position (15 / 0) 7.68 kN , X/Y position (93 / 0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	7.68	44.67	17.2
Concrete cone failure	7.68	17.67	43.5

* Most unfavourable anchor

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
67.00	1.50	44.67	7.68	17.2

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	17.2	1	β _{N,s;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)
$$N_{Rk,c} = 22.10 k_{N} \cdot \frac{38,025 mm^{2}}{1000} + 000 + 1.000 + 1.000 + 26.50 k_{N}$$

$$N_{Rk,c} = 22.10kN \cdot \frac{36,025mm^2}{38,025mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.199 = 26.50kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(65mm\right)^{1.5} = 22.10kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{98mm}\right) = 1.000 \le 1$$
Eq. (7.4)

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{195mm}} = 1.000 \le 1 \qquad \Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{195mm}} = 1.000 \le 1$$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{78mm}{1.5 \cdot 65mm} = 1.20 \ge 1$$

N _{Rk,c} kN	Yмс	N _{Rd,c} kN	N _{Ed} kN	β _{N,c} %
26.50	1.50	17.67	7.68	43.5

Anchor no.	β _{N,c} %	Group N°	Decisive Beta
1	43.5	1	β _{N,c;1}

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation βv %
Steel failure without lever arm *	0.33	44.00	0.8
Concrete pry-out failure	0.33	56.54	0.6

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_{Rd,s})

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 55.00 kN = 55.00 kN$$

V _{Rk,s}	ΎMs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
55.00	1.25	44.00	0.33	0.8

Anchor no.	βvs %	Group N°	Decisive Beta
1	0.8	1	βvs;1

Concrete pry-out failure

$$V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$$
 (V_{Rd,cp})

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 3.2 \cdot 26.50 kN = 84.81 kN$$

$$N_{Rk,c} = N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{rc,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.39a)

$$N_{Rk,c} = 22.10kN \cdot \frac{38,025mm^2}{38,025mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.199 = 26.50kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(65mm\right)^{1.5} = 22.10kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{98mm}\right) = 1.000 \le 1$$

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.35)/ (7.36)

Page 4

innovative solutions

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{78mm}{1.5 \cdot 65mm} = 1.20 \ge 1$$

V _{Rk,cp}	Ү Мс	V _{Rd,cp}	V _{Ed}	βν,cp
kN		kN	kN	%
84.81	1.50	56.54	0.33	0.6

	β _{v,cp}		
Anchor no.	%	Group N°	Decisive Beta
1	0.6	1	βv,cp;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βγ %
Steel failure *	17.2	Steel failure without lever arm *	0.8
Concrete cone failure	43.5	Concrete pry-out failure	0.6

* Most unfavourable anchor

Resistance to combined tensile and shear loads

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof

Profile type

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

t = 10 mm

None

• For loads with momentum and tension forces load combinations without bending moment should also be checked.

Installation data

Anchor

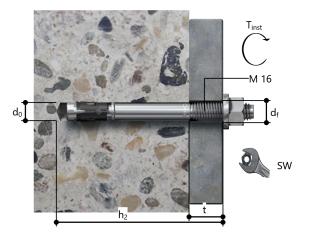
Anchor system Anchor

Accessories

fischer Bolt anchor FAZ II Bolt anchor FAZ II 16/25, zinc plated steel

Blow-out pump ABG big Pointer M 16x100/400 or alternatively FHD 16/250/380 Hammer drilling with or without suction Erection of the drillhole by hammer drilling with or without suction cleaning Art.-No. 95836

Art.-No. 89300 Art.-No. 543634


Art.-No. 546599

Installation details

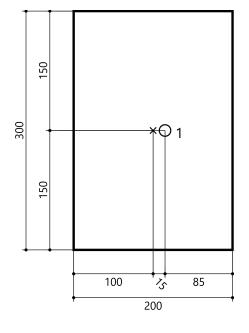
Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Drilling method Drill hole cleaning

Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max M 16 $d_0 = 16 \text{ mm}$ $h_2 = 98 \text{ mm}$ $h_{ef} = 65 \text{ mm}$

 $\begin{array}{l} h_{nom} = 83 \text{ mm} \\ hammer drilling \\ only blow out by hand \\ No borehole cleaning required in \\ case of using a hollow drill bit, e.g. \\ fischer FHD. \\ Push-through installation \\ Annular gap not filled \\ T_{inst} = 110.0 \text{ Nm} \\ 24 \text{ mm} \\ t = 10 \text{ mm} \\ t_{fix} = 10 \text{ mm} \\ t_{fix, max} = 45 \text{ mm} \end{array}$

Base plate details

Base plate material Base plate thickness Clearance hole in base plate Not available t = 10 mm d_f =18 mm


Attachment

Profile type

None

Anchor coordinates

Anchor no.	x mm	y mm
1	15	0

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

Comment

Case 4 & 6 & 9

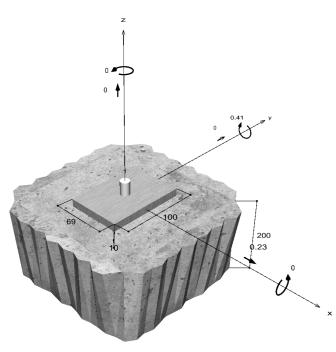
Design Specifications

Anchor

Anchor system Anchor Calculated anchorage depth Design Data fischer High performance anchor FH II High performance anchor FH II 18/25 SK, zinc plated steel 80 mm

Anchor design in Concrete according European Technical Assessment ETA-07/0025, Option 1, Issued 14/05/2018

🎯 CE


Geometry / Loads / Scale units

mm, kN, kNm

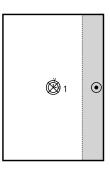
Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method Base material Concrete condition Reinforcement	Design Method EN1992-4:2018 mechanical fastener Normal weight concrete, C30/37, EN 206 Cracked, dry hole No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	69 mm x 100 mm x 10 mm
Profile type	None


Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M_{Ed,x} kNm	M_{Ed,y} kNm	М_{т,Ed} kNm	Type of loading
1	0.00	0.23	0.00	0.00	0.41	0.00	Static or quasi-static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action kN	Shear Action kN	Shear Action x kN	Shear Action y kN
1	13.84	0.23	0.23	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.58 ‰ 18.9 N/mm² 13.84 kN , X/Y position (0/0) 13.84 kN , X/Y position (30/0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	13.84	44.93	30.8
Pullout failure *	13.84	20.33	68.1
Concrete cone failure	13.84	35.27	39.2

* Most unfavourable anchor

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
67.40	1.50	44.93	13.84	30.8

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	30.8	1	β _{N,s;1}

Pullout failure

$$N_{Ed}~\leq~rac{N_{Rk,p}}{\gamma_{Mp}}$$
 (N_{Rd,p})

N _{Rk,p} kN	Ψ _c	Үм р	N _{Rd,p} kN	N _{Ed} kN	β _{Ν,Ρ} %
30.50	1.220	1.50	20.33	13.84	68.1

The given Psi,c-factor may has been determined by interpolation.

Anchor no.	β _{Ν,Ρ} %	Group N°	Decisive Beta
1	68.1	1	β _{N,p;1}

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

 $\Psi_{re,N}~=~1.000$

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{ec,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 30.18kN \cdot \frac{57,600mm^2}{57,600mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.753 = 52.91kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(80mm\right)^{1.5} = 30.18kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{120mm}\right) = 1.000 \le 1$$

Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{240mm}} = 1.000 \le 1 \qquad \Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{240mm}} = 1.000 \le 1$$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{30mm}{1.5 \cdot 80mm} = 1.75 \ge 1$$
Eq. (7.6)

N _{Rk,c} kN	Ү Мс	N _{Rd,c} kN	N _{Ed} kN	β Ν,c %
52.91	1.50	35.27	13.84	39.2

Anchor no.	β _{Ν,c} %	Group N°	Decisive Beta
1	39.2	1	βN,c;1

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation β _v %
Steel failure without lever arm *	0.23	27.20	0.8
Concrete pry-out failure	0.23	70.54	0.3

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_Rd,s)

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 34.00 kN = 34.00 kN$$

V _{Rk,s}	¥мs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
34.00	1.25	27.20	0.23	0.8

Anchor no.	βvs %	Group N°	Decisive Beta
1	0.8	1	βvs;1

Concrete pry-out failure

 $V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$ (V_{Rd,cp})

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 2 \cdot 52.91 kN = 105.81 kN$$
Eq. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
 Eq. (7.1)

$$N_{Rk,c} = 30.18kN \cdot \frac{57,600mm^2}{57,600mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.753 = 52.91kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(80mm\right)^{1.5} = 30.18kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{120mm}\right) = 1.000 \le 1$$
Eq. (7.4)

$$\Psi_{re,N} = 1.000$$
Eq. (7.5)
$$\Psi_{re,N} = \frac{1}{1000} \longrightarrow \Psi_{re,N} = 1.000 + 0.000 = 1.000 < 1$$

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \Longrightarrow \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{30mm}{1.5 \cdot 80mm} = 1.75 \ge 1$$

V _{Rk,cp}	Yмс	V _{Rd,cp}	V _{Ed}	β _{V,cp}
kN		kN	kN	%
105.81	1.50	70.54	0.23	0.3

Anchor no.	β _{ν,cp} %	Group N°	Decisive Beta
1	0.3	1	βv,cp;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βγ %
Steel failure *	30.8	Steel failure without lever arm *	0.8
Pullout failure *	68.1	Concrete pry-out failure	0.3
Concrete cone failure	39.2		

* Most unfavourable anchor

Resistance to combined tensile and shear loads

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof

Profile type

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

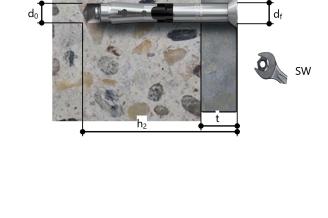
During the design process, the following hints and warnings were issued:

 The factor ψM,N is taking into account the effect of a compression force between the fixture and concrete in case of bending moments with or without axial force. If the bending moment does not act continuously, please also check this load case. See EN 1992-4, 7.2.1.4 (7)

t = 10 mm

None

Installation data


Anchor

AIII				
And	chor system	fischer High performance anchor FH II		
Anc	hor	High performance anchor FH II 18/25 SK, zinc plated steel	ArtNo. 44924	
Acc	essories	Blow-out pump ABG big SDS Plus II 18/150/200 or alternatively FHD 18/320/450 Hammer drilling with or without suction Erection of the drillhole by hammer drilling with or without suction cleaning	ArtNo. 89300 ArtNo. 531836 ArtNo. 546600	
Inst	tallation details			
Drill Drill Calo dep Insta Cou Drill	ead diameter hole diameter hole depth culated anchorage th allation depth inter-sink size ling method hole cleaning	M 12 $d_0 = 18 \text{ mm}$ $h_2 = 130 \text{ mm}$ $h_{ef} = 80 \text{ mm}$ $h_{nom} = 80 \text{ mm}$ 32 mm x 8 mm hammer drilling only blow out by hand No borehole cleaning required in case of using a hollow drill bit, e.g. finction FLID		

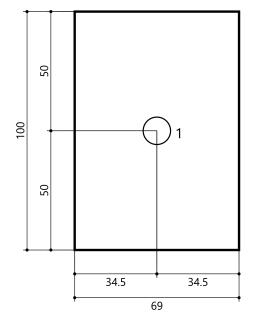
Installation type Annular gap Installation torque Internal hexagon socket size Base plate thickness Total fixing thickness Tfix,max

fischer FHD. Push-through installation Annular gap not filled T_{inst} = 80.0 Nm 8 mm

t = 10 mm $t_{fix} = 10 \text{ mm}$ t_{fix, max} = 25 mm

Base plate details

Base plate material Base plate thickness Clearance hole in base plate Not available t = 10 mm $d_f=20$ mm


Attachment

Profile type

None

Anchor coordinates

Anchor no.	x mm	y mm
1	0	0

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

Comment

Case 5 & 7

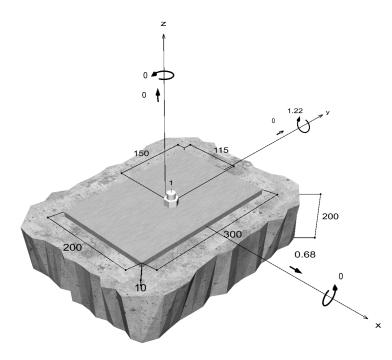
Design Specifications

<u>Anchor</u>

Anchor system Anchor Calculated anchorage depth Design Data fischer Bolt anchor FAZ II Bolt anchor FAZ II 16/25, zinc plated steel 65 mm

Anchor design in Concrete according European Technical Assessment ETA-05/0069, Option 1, Issued 03/07/2017

🎯 CE


Geometry / Loads / Scale units

mm, kN, kNm

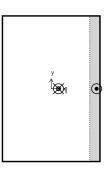
Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method Base material Concrete condition	Design Method EN1992-4:2018 mechanical fastener Normal weight concrete, C30/37, EN 206 Cracked, dry hole
Reinforcement	No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap not filled
Type of loading	Static or quasi-static
Base plate location	Base plate flush installed on base material
Base plate geometry	200 mm x 300 mm x 10 mm
Profile type	None


Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M_{Ed,x} kNm	M _{Ed,y} kNm	М_{т,Ed} kNm	Type of loading
1	0.00	0.68	0.00	0.00	1.22	0.00	Static or quasi-static

 $^{\star)}$ The required partial safety factors for actions are included

Resulting anchor forces

	Tensile action	Shear Action	Shear Action x	Shear Action y
Anchor no.	kN	kN	kN	kN
1	15.62	0.68	0.68	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions : 0.15 ‰ 5.0 N/mm² 15.62 kN , X/Y position (15 / 0) 15.62 kN , X/Y position (93 / 0)

Resistance to tension loads

Proof	Action kN	Capacity kN	Utilisation β _N %
Steel failure *	15.62	44.67	35.0
Concrete cone failure	15.62	17.67	88.4

* Most unfavourable anchor

Steel failure

$$N_{Ed}~\leq~rac{N_{Rk,s}}{\gamma_{Ms}}$$
 (N_{Rd,s})

N _{Rk,s}	Yмs	N _{Rd,s}	N _{Ed}	β _{N,s}
kN		kN	kN	%
67.00	1.50	44.67	15.62	35.0

Anchor no.	β _{N,s} %	Group N°	Decisive Beta
1	35.0	1	βN,s;1

Concrete cone failure

$$N_{Ed}~\leq~rac{N_{Rk,c}}{\gamma_{Mc}}$$
 (N_{Rd,c})

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{rc,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.1)

$$N_{Rk,c} = 22.10kN \cdot \frac{36,025mm^2}{38,025mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.199 = 26.50kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(65mm\right)^{1.5} = 22.10kN$$
Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{98mm}\right) = 1.000 \le 1$$
Eq. (7.4)

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

$$\Psi_{ec,Nx} = \frac{1}{1 + \frac{2 \cdot 0mm}{195mm}} = 1.000 \le 1$$
 $\Psi_{ec,Ny} = \frac{1}{1 + \frac{2 \cdot 0mm}{195mm}} = 1.000 \le 1$

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{78mm}{1.5 \cdot 65mm} = 1.20 \ge 1$$

N _{Rk,c} kN	Yмс	N _{Rd,c} kN	N _{Ed} kN	β _{N,c} %
26.50	1.50	17.67	15.62	88.4

Anchor no.	β _{N,c} %	Group N°	Decisive Beta
1	88.4	1	β _{N,c;1}

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation βv %
Steel failure without lever arm *	0.68	44.00	1.5
Concrete pry-out failure	0.68	56.54	1.2

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_{Rd,s})

$$V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 55.00 kN = 55.00 kN$$

V _{Rk,s}	ΎMs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
55.00	1.25	44.00	0.68	1.5

Anchor no.	βvs %	Group N°	Decisive Beta
1	1.5	1	βvs;1

Concrete pry-out failure

$$V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$$
 (V_{Rd,cp})

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 3.2 \cdot 26.50 kN = 84.81 kN$$

$$N_{Rk,c} = N_{Rk,c}^0 \cdot \frac{A_{c,N}}{A_{c,N}^0} \cdot \Psi_{s,N} \cdot \Psi_{rc,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
Eq. (7.39a)

$$N_{Rk,c} = 22.10kN \cdot \frac{38,025mm^2}{38,025mm^2} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.199 = 26.50kN$$

$$N_{Rk,c}^{0} = k_{1} \cdot \sqrt{f_{ck}} \cdot h_{ef}^{1.5} = 7.7 \cdot \sqrt{30.0N/mm^{2}} \cdot \left(65mm\right)^{1.5} = 22.10kN$$
 Eq. (7.2)

$$\Psi_{s,N} = \min\left(1; \ 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}}\right) = \min\left(1; \ 0.7 + 0.3 \cdot \frac{\infty}{98mm}\right) = 1.000 \le 1$$

$$\Psi_{re,N} = 1.000$$
 Eq. (7.5)

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$
Eq. (7.6)

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.35)/ (7.36)

innovative solutions

$$\Psi_{M,N} = 2 - \frac{z}{1.5 \cdot h_{ef}} = 2 - \frac{78mm}{1.5 \cdot 65mm} = 1.20 \ge 1$$

V _{Rk,cp}	ү мс	V _{Rd,cp}	V _{Ed}	βv,cp
kN		kN	kN	%
84.81	1.50	56.54	0.68	1.2

	β _{v,cp}		
Anchor no.	%	Group N°	Decisive Beta
1	1.2	1	βv,cp;1

Utilization of tension and shear loads

Tension loads	Utilisation βN %	Shear Loads	Utilisation βγ %
Steel failure *	35.0	Steel failure without lever arm *	1.5
Concrete cone failure	88.4	Concrete pry-out failure	1.2

* Most unfavourable anchor

Resistance to combined tensile and shear loads

Information concerning the anchor plate

Base plate details

Plate thickness specified by user without proof

Profile type

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.7)

t = 10 mm

None

• For loads with momentum and tension forces load combinations without bending moment should also be checked.

Installation data

Anchor

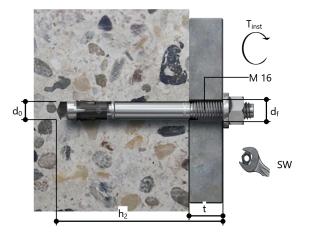
Anchor system Anchor

Accessories

fischer Bolt anchor FAZ II Bolt anchor FAZ II 16/25, zinc plated steel

Blow-out pump ABG big Pointer M 16x100/400 or alternatively FHD 16/250/380 Hammer drilling with or without suction Erection of the drillhole by hammer drilling with or without suction cleaning Art.-No. 95836

Art.-No. 89300 Art.-No. 543634


Art.-No. 546599

Installation details

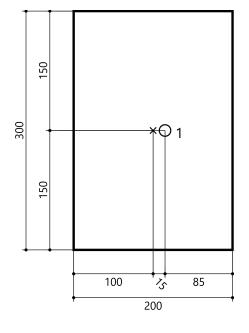
Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Drilling method Drill hole cleaning

Installation type Annular gap Installation torque Socket size Base plate thickness Total fixing thickness Tfix,max M 16 $d_0 = 16 \text{ mm}$ $h_2 = 98 \text{ mm}$ $h_{ef} = 65 \text{ mm}$

 $\begin{array}{l} h_{nom} = 83 \text{ mm} \\ hammer drilling \\ only blow out by hand \\ No borehole cleaning required in \\ case of using a hollow drill bit, e.g. \\ fischer FHD. \\ Push-through installation \\ Annular gap not filled \\ T_{inst} = 110.0 \text{ Nm} \\ 24 \text{ mm} \\ t = 10 \text{ mm} \\ t_{fix} = 10 \text{ mm} \\ t_{fix, max} = 45 \text{ mm} \end{array}$

Base plate details

Base plate material Base plate thickness Clearance hole in base plate Not available t = 10 mm d_f =18 mm


Attachment

Profile type

None

Anchor coordinates

Anchor no.	x mm	y mm
1	15	0

